M408C: Problem Set 13

Problem 1

Evaluate the following integrals:

$$\int x\sqrt{1-x^2} \, dx, \quad \int x^2 e^{x^3} \, dx, \quad \int_0^3 \frac{1}{5x+1} \, dx.$$

Problem 2

Sketch the region enclosed by the given curves and find its area:

- $y = e^x$, $y = x^2 1$, x = -1, x = 1.
- $y = \sin(x), \ y = x, \ x = \frac{\pi}{2}, \ x = \pi.$
- $y = (x 2)^2, y = x.$

Problem 3

Skethc the region enclosed by the given curves and find its area:

- $y = 12 x^2$, $y = x^2 6$.
- $y = \cos(x), \ y = 2 \cos(x), \ x = 0, \ x = \frac{\pi}{2}.$
- $y = \sqrt{x-1}, \ x-y = 1.$

Problem 4

Sketch the solid obtained by rotating the region bounded by the given curves about the x-axis, then calculate its volume:

- y = x + 1, y = 0, x = 0, x = 2.
- $y = e^x$, y = 0, x = -1, x = 1.

Problem 5

Sketch the solid obtained by rotating the region bounded by the given curves about the y-axis, then calculate its volume:

- $y = \sqrt[3]{x}, y = 0, x = 1.$
- $y = x^3$, y = 0, x = 1, x = 2.

Problem 6

Find the average value of the function on the given interval:

- $f(x) = 3x^2 + 8x$ on [-1, 2].
- $f(x) = e^{\sin(x)} \cos(x)$ on $[-\frac{\pi}{2}, \frac{\pi}{2}]$.