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Creating new people

This person does not exist! Link

Starting point 200K samples of HQ headshots: CelebAHQ Link

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019, pp. 4401–4410.
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{Xi}200K
i=1 ⊂ R1024×1024×3 = R3145728
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Assumptions

1. We have access to infinite data samples that are independent
and identically distributed:

{Xi}∞i=1 i.i.d. with distribution P∗ ∈ P(RK )

with
1 ≪ K

2. The effective dimension of the problem is more manageable

“L = dim(supp P∗)” ≪ K .

e.g. This person does not exist: K = 3145728 and L = 512,
Parameter size: 310Mb, 40 days of GPU compute time.
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Supervised Learning problem

Given a prior distribution which is easy to sample

Z ∼ N (0, 1) ∈ P(RL),

and a continuous function

g : RL → RK ,

easy to evaluate, which we call the Generator,

we consider the distribution of the composition

g(Z ) ∼ g#N ∈ P(RK )
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Supervised Learning problem

Objective:

Find g : RL → RK easy to evaluate, such that

d(g#N ,P∗) is small,

for some meaningful metric d on P(RK ).

▶ The eyeball metric rules them all in ML: Amazon Turk Link

▶ If we consider the family gθ(z) of parametric function, we can
minimize over θ to get a supervised learning problem.

▶ Catch: We do not have access to the distribution P∗, but only
to samples.

6 / 36

https://www.mturk.com/


Supervised Learning problem

Objective:

Find g : RL → RK easy to evaluate, such that

d(g#N ,P∗) is small,

for some meaningful metric d on P(RK ).

▶ The eyeball metric rules them all in ML: Amazon Turk Link

▶ If we consider the family gθ(z) of parametric function, we can
minimize over θ to get a supervised learning problem.

▶ Catch: We do not have access to the distribution P∗, but only
to samples.

6 / 36

https://www.mturk.com/


Supervised Learning problem

Objective:

Find g : RL → RK easy to evaluate, such that

d(g#N ,P∗) is small,

for some meaningful metric d on P(RK ).

▶ The eyeball metric rules them all in ML: Amazon Turk Link

▶ If we consider the family gθ(z) of parametric function, we can
minimize over θ to get a supervised learning problem.

▶ Catch: We do not have access to the distribution P∗, but only
to samples.

6 / 36

https://www.mturk.com/


Supervised Learning problem

Objective:

Find g : RL → RK easy to evaluate, such that

d(g#N ,P∗) is small,

for some meaningful metric d on P(RK ).

▶ The eyeball metric rules them all in ML: Amazon Turk Link

▶ If we consider the family gθ(z) of parametric function, we can
minimize over θ to get a supervised learning problem.

▶ Catch: We do not have access to the distribution P∗, but only
to samples.

6 / 36

https://www.mturk.com/


Vanilla GAN

Information theory Relative Entropy or Kullback–Leibler divergence

H(g#N|P∗) =


∫
RK

(
dg#N
dP∗

)
log

(
dg#N
dP∗

)
dP∗ g#N ≪ P∗

+∞ g#N ≪̸ P∗

We need a way to evaluate it using samples.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In: Advances in neural information
processing systems 27 (2014).
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Duality

Legendre-Fenchel Transform:

H(g#N|P∗) = sup
f ∈Cb(RK )

∫
RL

f (g(z))dN (z)− log

∫
RL

eg(x)dP∗(x),

where
f : RK → R

is called the Discriminator.

8 / 36



Sampling

Advantage: For fixed Discriminator f ∈ Cb(RK ), we can sample
the integrals:

Given m ∈ N a batch size and Z1, ...,Zm i.i.d. with distribution N
and X1, ...,Xm i.i.d. with distribution P∗∫

RL

f (g(z))dN (z)− log

∫
RL

ef (x)dP∗(x)

∼
1
m

m∑
i=1

f (g(Zi ))− log
1
m

m∑
i=1

ef (Xi )

For simplicity, we take the batch size m = 1 from now on, which is
an estimator in expectation.
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Degeneracy
If g#N ≪̸ P∗, then H(g#N|P∗) = ∞

We will learn nothing if the distributions are not aligned from the
start!
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1-Wasserstein distance

Alternative, the 1-Wasserstein distance with Kantorovich’s duality

d1(g#N ,P∗) = E(X ,Z)∼π[|X − g(Z )|]

= sup
f :∥f ∥lip≤1

∫
RL

f (g(z))dN (z)−
∫
RK

f (x) dP∗(x).

= sup
f :∥f ∥lip≤1

Ef (g(Z ))− Ef (X ).

The main advantage is that this distance does not degenerate.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In: International conference on machine learning. PMLR. 2017, pp. 214–223.

11 / 36



1-Wasserstein distance

Alternative, the 1-Wasserstein distance with Kantorovich’s duality

d1(g#N ,P∗) = E(X ,Z)∼π[|X − g(Z )|]

= sup
f :∥f ∥lip≤1

∫
RL

f (g(z))dN (z)−
∫
RK

f (x) dP∗(x).

= sup
f :∥f ∥lip≤1

Ef (g(Z ))− Ef (X ).

The main advantage is that this distance does not degenerate.

Arjovsky, Chintala, and Bottou 2017.
11 / 36



1-Wasserstein distance

Alternative, the 1-Wasserstein distance with Kantorovich’s duality

d1(g#N ,P∗) = E(X ,Z)∼π[|X − g(Z )|]

= sup
f :∥f ∥lip≤1

∫
RL

f (g(z))dN (z)−
∫
RK

f (x) dP∗(x).

= sup
f :∥f ∥lip≤1

Ef (g(Z ))− Ef (X ).

The main advantage is that this distance does not degenerate.

Arjovsky, Chintala, and Bottou 2017.
11 / 36



1-Wasserstein distance

Alternative, the 1-Wasserstein distance with Kantorovich’s duality

d1(g#N ,P∗) = E(X ,Z)∼π[|X − g(Z )|]

= sup
f :∥f ∥lip≤1

∫
RL

f (g(z))dN (z)−
∫
RK

f (x) dP∗(x).

= sup
f :∥f ∥lip≤1

Ef (g(Z ))− Ef (X ).

The main advantage is that this distance does not degenerate.

Arjovsky, Chintala, and Bottou 2017.
11 / 36



1-Wasserstein distance

Alternative, the 1-Wasserstein distance with Kantorovich’s duality

d1(g#N ,P∗) = E(X ,Z)∼π[|X − g(Z )|]

= sup
f :∥f ∥lip≤1

∫
RL

f (g(z))dN (z)−
∫
RK

f (x) dP∗(x).

= sup
f :∥f ∥lip≤1

Ef (g(Z ))− Ef (X ).

The main advantage is that this distance does not degenerate.

Arjovsky, Chintala, and Bottou 2017.
11 / 36



Neural Networks

Introduce, the simplest setting 1 hidden layer Neural Networks:

gΘ(z) =
1
N

N∑
i=1

σ(z ; θi ) fΩ(x) =
1
M

M∑
j=1

σ(x ;ωi )

with Θ = (θ1, ...θN) and Ω = (ω1, ..., ωM).
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A typical smooth example is the sigmoid

σ(z ; θi ) =


a1
i

1+e
−(b1

i
·z+c1

i
)

...
aKi

1+e
−(bK

i
·z+cK

i
)

 ∈ RK

θi = ((a1
i , b

1
i , c

1
i ), ..., (a

K
i , b

K
i , c

K
i )) ∈ (R× RL × R)K

σ(x ;ωj) =
αj

1 + e−(βj ·x+γj )
∈ R

ωj = (αj , βj , γj) ∈ R× RK × R
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Exchangeability

The relative order of the parameters does not affect the output
function.

Without loss of information we can encode

(θ1, ..., θN) → µN =
1
N

N∑
i=1

δθi ∈ P
(
(R× RL × R)K

)
and

(ω1, ..., ωN) → νM =
1
M

M∑
i=1

δωi ∈ P
(
R× RK × R

)
.
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Algorithm

Arjovsky, Chintala, and Bottou 2017.
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Important parameters

▶ Learning rate α = 0.00005, we consider ∆t = α/N the
fictitious time discretization.

▶ nc = 5 the critics advantage, we consider γc = nc
N
M the time

re-scaling parameter.
▶ c = 0.01 the clipping parameter that imposes ∥ωi∥∞ ≤ c to

satisfy a uniform Lipschitz bound.
▶ RMSProp is a version of SGD that normalizes the gradient

sizes componentwise to escape plateaus. For some β ∈ [0, 1]:

M i
k = (1 − β)M i

k−1 + β|∂θiE (Θk)|2

θik+1 = θik+1 − α
∂θiE (Θk)√

M i
k
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Supervised learning

Supervised learning:

min
Θ

E [Θ] = min
Θ

∫
|gΘ(x)−g∗(x)|2 dP∗(x) = min

Θ

∫
e(Θ, x) dP∗(x)

Algorithm:
While Θ has not converged:

Sample Xk ∼ P∗

Θk+1 = Θk − α∂Θe[Θk ,Xk ]

SGD is a stochastic discretization of

Θ̇ = −∇ΘE [Θ].
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SGD as a Stochastic discretization

Using, exchangeability

gΘ(x) =
1
N

N∑
i=1

σ(x , θi ) = ⟨g(x , ·), µN⟩

we notice

∂θiE [θ] =
2
N

∫
(gΘ(x)− g∗(x))∂2σ(x , θi )dP∗(x) =

1
N
V [µN ](θi )

Namely Θ̇(t) = −∇E [Θ(t)], if and only if,{
∂tµN(t) +

1
N∇ · (µN(t)V [µN(t)]) = 0

µN(0) = 1
N

∑N
i=1 δθi,in

18 / 36



SGD as a Stochastic discretization

Using, exchangeability

gΘ(x) =
1
N

N∑
i=1

σ(x , θi ) = ⟨g(x , ·), µN⟩

we notice

∂θiE [θ] =
2
N

∫
(gΘ(x)− g∗(x))∂2σ(x , θi )dP∗(x) =

1
N
V [µN ](θi )

Namely Θ̇(t) = −∇E [Θ(t)], if and only if,{
∂tµN(t) +

1
N∇ · (µN(t)V [µN(t)]) = 0

µN(0) = 1
N

∑N
i=1 δθi,in

18 / 36



SGD as a Stochastic discretization

Using, exchangeability

gΘ(x) =
1
N

N∑
i=1

σ(x , θi ) = ⟨g(x , ·), µN⟩

we notice

∂θiE [θ] =
2
N

∫
(gΘ(x)− g∗(x))∂2σ(x , θi )dP∗(x) =

1
N
V [µN ](θi )

Namely Θ̇(t) = −∇E [Θ(t)], if and only if,{
∂tµN(t) +

1
N∇ · (µN(t)V [µN(t)]) = 0

µN(0) = 1
N

∑N
i=1 δθi,in

18 / 36



Convergence of the dynamics

Theorem (Law of Large Numbers)
Assume {θi ,in} i.i.d. sampled from µin. Then, µN converges to a
deterministic process which concentrates in the unique solution to{

∂tµ(t) +∇ · (µ(t)V [µ(t)]) = 0
µ(0) = µin

(SGD)

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. In: Advances in neural information processing systems
31 (2018); Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of
two-layer neural networks. In: Proceedings of the National Academy of Sciences 115.33 (2018), E7665–
E7671; Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A law
of large numbers. In: SIAM Journal on Applied Mathematics 80.2 (2020), pp. 725–752; Grant Rotskoff
and Eric Vanden-Eijnden. Trainability and accuracy of artificial neural networks: An interacting particle
system approach. In: Communications on Pure and Applied Mathematics 75.9 (2022), pp. 1889–1935.
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Gradient flow interpreation

Considering the energy E : P → R, given by

E[µ] =
1
2

∫
|gµ(x)− g∗(x)|2 dP∗(x)

we have that (SGD) is the 2-Wasserstein gradient flow of E.

20 / 36



Aggregation Equation

Moreover, expanding the square we obtain the aggregation
equation:

E[µ] =
1
2

∫
W (θ1, θ2)dµ(θ1)dµ(θ2) +

∫
V (θ)dµ(θ) + C ,

where
W (θ1, θ2) =

∫
σ(x ; θ1)σ(x ; θ2)dP∗(x)

and
V (θ) = −

∫
g∗(x)σ(x ; θ) dP∗(x).

21 / 36



Aggregation Equation

Moreover, expanding the square we obtain the aggregation
equation:

E[µ] =
1
2

∫
W (θ1, θ2)dµ(θ1)dµ(θ2) +

∫
V (θ)dµ(θ) + C ,

where
W (θ1, θ2) =

∫
σ(x ; θ1)σ(x ; θ2)dP∗(x)

and
V (θ) = −

∫
g∗(x)σ(x ; θ) dP∗(x).

21 / 36



W-GAN as a discretization

Replacing RMSProp by SGD, we have the algorithm{
θk+1
i = θki +∆t vθ[µN , νM ](θi ; (Xk ,Zk))

ωk+1
j = ProyQ(ω

k
j + γc∆t vω[µN , νM ](ωk

j ; (Xk ,Zk))),

where
Q = [−c , c]1+L+1, γc = nc

N

M

and {Xk}∞k=0 and {Zk} i.i.d sampled from P∗ and N respectively.
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WGAN as a PDE

The associated PDE is given by{
∂tµ−∇ · (∂µΨ[µ, ν]µ) = 0
∂tν+γc∇ · (ProjΠQ

∂νΨ[µ, ν]ν) = 0
(WGAN-PDE)

where

Ψ[µ, ν] =

∫
RL

fν(gµ(z)) dN (z)−
∫
RK

fν(x) dP∗(x)

Notice that ProjΠQ
: Q × RK → RK is a discontinuous operator on

∂Q .
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Well Posedness and Coagulation at the Boundary

Proposition (jww R. Cabrera & B. Suassuna)
If the activation function is smooth, then (WGAN-PDE) has a
unique stable solution:

d2(µ1(t), µ2(t)) + d2(ν1(t), ν2(t))

≤ C (d4(µ1,in, µ2,in) + d2(ν1,in, ν2,in))

for any t ∈ [0,T ].

Observation: If the support of ν hits ∂Q it will flatten, and can
never fatten back up.

In particular, the support it can coagulate to a single point in finite
time t0, and ν(t) = δω(t) for any t > t0.
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Quantified convergence

Theorem (jww R. Cabrera & B. Suassuna)
Consider (µN(t), νN(t)) the time interpolation of the empirical
measures {(µk

N , ν
k
N)}∞k=1 given by the WGAN algorithm, then for

any fixed time interval t ∈ [0,T ]

Ed2
2 ((µN(t), νN(t)), (µ∞(t), ν∞(t))) ≤ C

N

where (µ∞, ν∞) is the unique solution to (WGAN-PDE) with initial
condition µin = 1

N

∑N
i=1 δθi , νin = 1

M

∑M
j=1 δωj .
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Quantified convergence

Corollary (jww R. Cabrera & B. Suassuna)

If {θi}Ni=1, {ωj}Mj=1 i.i.d. sampled from µin and ν in respectively, then

Ed2
2 ((µN(t), νN(t)), (µ∞(t), ν∞(t))) ≤ C

N
1

K(2+L)

Remark: The Wasserstein distance suffers from the curse of
dimensionality, when we approximate by samples.
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Proof

Compare SGD
θk+1 = θk +∆tv(θk ,Xk)

with (Projected) Forward Euler

θ̃k+1 = θ̃k +∆tV (θ̃k)

ek+1 = θk+1 − θ̃k+1 ≤ (1 +∆t|V |lip)ek +∆tMk ,

with
Mk = v(θk ,Xk)− V (θk)

Gromwall’ inequality, we have

E[|ek |2] ≤ (∆t)2E

∣∣∣∣∣
k∑

r=0

(1 +∆t|V |lip)k−rMr

∣∣∣∣∣
2

≤ C∆t.
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Mode Collapse
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Mode Collapse

Chat-GPT loves to delve:

Abstract

Generative Adversarial Networks (GANs) was one of the first
Machine Learning algorithms to be able to generate remarkably
realistic synthetic images. In this presentation, we DELVE into
the mechanics of the GAN algorithm and its profound
relationship with optimal transport theory. Through a detailed
exploration, we illuminate how GAN approximates a system of
PDE, particularly evident in shallow network architectures.
Furthermore, we investigate the phenomenon of mode collapse,
a well-known pathological behavior in GANs, and elucidate its
connection to the underlying PDE framework through an
illustrative example.
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Failure to converge

Example: K = 1, L = 1

P∗ =
1
2
N (0,−1) +

1
2
N (0, 1)

Video
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https://www.youtube.com/watch?v=jFOos-t-KS4


Toy Example

K = 1, L = 1, P∗ =
1
2δ−1 +

1
2δ1 and activation functions

g(z ; θ) =

{
−1 if z < θ

1 if z > θ
f (x , ω) = (ωx)+.

gθ#N = Φ(θ)δ−1 + (1 − Φ(θ))δ1
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Graphs

d1(gθ#N ,P∗) = max
ω∈[−1,1]

∫
fω(gθ(z))dN (z)−

∫
fω(x)dP∗(x)
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Graphs

ω = 1

ω = −1
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Toy Example:ODE dynamics

Gradient descent/ascent gives rise to periodic orbits. If we consider

Eγ [θ, ω] = cosh(θ) +
1
γ
|ω|2,

then for all t > 0

Eγ [θ(t), ω(t)] = Eγ [θin, ωin]
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Periodic Orbits

γ = 1

γ = 10
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Questions?

Thank you!
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