
On the relationship between the thin film equation and Tanners law

On the relationship between the thin film equation and
Tanners law

Matias G. Delgadino

PUC-Rio de Janeiro

September 9, 2020

Joint work with Antoine Mellet (UMD)

http://bit.ly/windhsielddrop

Matias G. Delgadino | PUC-Rio de Janeiro | September 9, 2020 1 / 32



On the relationship between the thin film equation and Tanners law

Thin film equation: model assumptions (Greenspan 78)

Spreading of thin liquid droplets on a planar surface in the complete
wetting regime.

i.e. no gravitational forces & perfect hydrophilic surface.
(http://bit.ly/HydroPH)

The droplet shape is given by the graph of a function

u(t, x) : (0,∞)× R (or R2)→ R+.

Continuity equation
∂tu +∇ · (vu) = 0,

with

v(t, x) =
1

u

∫ u

0
vH(t, x , z) dz .
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On the relationship between the thin film equation and Tanners law

Thin film equation: model assumptions (Greenspan 78)

The pressure is independent of height and is given by the mean curvature

p(t, x) = −σHgraph(u)

∼ −σ∆u(t, x) for flat droplets.

Shears in horizontal velocity balances the pressure:

µ∂zzvH(t, x , z) = ∇p(t, x).

Boundary conditions:{
∂zvH(t, x , u) = 0 No shear at the stress along the surface

Λ
u ∂zvH(t, x , 0) = vh(t, x , 0) Slip condition.

The coefficient Λ� 1 is of the size of atoms!
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On the relationship between the thin film equation and Tanners law

Thin film equation: model assumptions (Greenspan 78)

Solving for vH and

v = −σ
µ

(
u2

3
+ Λu

)
∇∆u.

Replacing in the continuity equation

∂tu +
σ

3µ
∇ · ((u3 + 3Λu)∇∆u) = 0

Parameters: σ interfacial force, µ viscosity, Λ� 1 slip coefficient.
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On the relationship between the thin film equation and Tanners law

Thin film equation: model assumptions (Greenspan 78)

Derivation implies the equation should be satisfied only on {u > 0}.

Simplifying assumption: complete wetting regime, perfectly hydrophilic
surface. (http://bit.ly/HydroPH)

∂tu + σ
3µ∇ · ((u3 + 3Λu)∇∆u) = 0 in (0,∞)× Ω

(u3 + 3Λu)∇∆u · ηΩ = 0 on (0,∞)× ∂Ω

∇u · ηΩ = 0 on (0,∞)× ∂Ω

u(0, x) = uin(x) in Ω

Existence: 1-D Bernis-Friedman (JDE 90) and higher-D Grün (CPDE 04).

Uniqueness is an open problem!!!
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On the relationship between the thin film equation and Tanners law

Weak Slippage

General slip conditions:

Λun−2∂zvH(t, x , 0) = vH(t, x , 0) with n ∈ (0, 3).

∂tu +
σ

3µ
∇ · ((u3 + 3Λun)∇∆u) = 0

If Λ = 0 (no slip condition) movement of the contact line leads to infinite
dissipation (Huh & Scriven J. Fluid Mechanics 71).

We will consider
Λ ∼ ε� 1.

Movement of the contact line of order

1

| ln ε|
(Glasner, Physics of Fluids 03).
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On the relationship between the thin film equation and Tanners law

Physical regime

We will analyze the long time scales

t ∼ | ln ε|.

Formally, we can expect the pressure to have equilibrated faster than this
time scale:

0 = ∇p(t, x) = −σ∇∆u.

which implies
−∆u = λ(t).

In 1-D, we expect a quick relaxation to almost parabolas.
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On the relationship between the thin film equation and Tanners law

Quasi-Static approximation

In the limit, we expect{
−∆u = λ(t) in {u(t) > 0},
V = F (|∇u|) on ∂{u(t) > 0},

where V is the velocity of the free boundary. (Glasner-Kim, Inter Free
Bound 09)

Tanner’s law (78): The edge velocity of a spreading droplet is
approximately proportional to the cube of the slope at the inflection:

F (|∇u|) = α|∇u|3.

WARNING: Droplets merge instantaneously!!!
http://bit.ly/MergedDrops
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On the relationship between the thin film equation and Tanners law

Quasi-Static Approximation

We should notice that we can just follow the wetted domain keeping track
of the mass.

If we decompose the wetted region into its connected components

{u(t) > 0} =
⋃
i∈I

Σi (t),

then for every i ∈ I , u minimizes∫
Σi (t)
|∇v |2 dx

subject to

v ∈ H1
0 (Σi (t)) &

∫
Σi (t)

v dx =

∫
Σi (t)

u dx .
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On the relationship between the thin film equation and Tanners law

Quasi-Static Approximation

Hard problem, so we start with 1-D.

Advantage the Quasi-Static approximation is well posed: we can construct
explicit solutions.

If we take a component of the wetted region (a(t), b(t)), then

u(x , t) = 6

(∫ b(t)

a(t)
u(y) dy

)
(b(t)− x)+(x − a(t))+

(b(t)− a(t))3
on (a(t), b(t)).

By Tanner’s law

ȧ(t) = −ḃ(t) = −72

(∫ b(t)

a(t)
u(y) dy

)3

(b(t)− a(t))−6.

We evolve by the ODE until droplets merge.
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On the relationship between the thin film equation and Tanners law

Back to PDE

We are interested in the limit ε→ 0 of
∂tu

ε + | ln ε|((uε3 + ε3−nuεn)uεxxx)x = 0 in (0,T )× Ω

uε(0, x) = uin(x) in Ω

((uε3 + ε3−nuεn)uεxxx = 0 on (0,T )× ∂Ω

uεx = 0 on (0,T )× ∂Ω

We expect uε to converge to a solution of the 1-D Quasi-Static
approximation with Tanner’s law.
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On the relationship between the thin film equation and Tanners law

Re-scaling

We notice that
uε(t, x) = εhε(ε7| ln ε|t, εx)

where {
∂th

ε + ∂x((hεn + hε3)∂xxxh
ε) = 0

hεin(x) = 1
εuin( xε ).

Mathematicians that studied similar equations include Bernis, Bertozzi,
Carrillo, Dal Passo, Fischer, Giacomelli, Glasner, Gnann, Knüpfer, Otto,
Majdoub, Masmoudi, Matthes, Mellet, Pugh, Savare, Tayachi, Toscani and
many more...
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On the relationship between the thin film equation and Tanners law

Results for the homogeneous equation

Most research done on the homogeneous problem:

∂th + ∂x(hn∂xxxh) = 0.

For n ≥ 4, finite entropy solutions need to have full support.
(Bertozzi-Pugh, CPAM 96)

For n < 3, there is existence of source type solutions. In the case n ≥ 3,
the support is not expected to move; Motion of the contact line implies
infinite dissipation. Source type solutions do not exists for n = 3 (Bernis,
Peletier, Williams, JDE 92).

Finite speed of propagation of the support, (Bernis, Acad. Sci. Paris 96)

Uniqueness result for source type solutions for n = 1 (Majdoub,
Masmoudi, Tayachi, AMS 18).
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On the relationship between the thin film equation and Tanners law

Non-Homogeneous: Travelling Wave

There exists travelling wave solutions for

∂th + ∂x((hn + h3)∂xxxh) = 0,

with n ∈ (3/2, 7/3). (Giacomelli-Gnann-Otto, Nonlinearity 16)

That is to say, for every V > 0 there exists HV : R→ R, such that

h(t, x) = HV (x − Vt)

is a solution to the equation.

Matias G. Delgadino | PUC-Rio de Janeiro | September 9, 2020 14 / 32



On the relationship between the thin film equation and Tanners law

Non-Homogeneous: Travelling Wave

There exists travelling wave solutions for

∂th + ∂x((hn + h3)∂xxxh) = 0,

with n ∈ (3/2, 7/3). (Giacomelli-Gnann-Otto, Nonlinearity 16)

That is to say, for every V > 0 there exists HV : R→ R, such that

h(t, x) = HV (x − Vt)

is a solution to the equation.

Matias G. Delgadino | PUC-Rio de Janeiro | September 9, 2020 14 / 32



On the relationship between the thin film equation and Tanners law

Non-Homogeneous: Travelling Wave

There exists travelling wave solutions for

∂th + ∂x((hn + h3)∂xxxh) = 0,

with n ∈ (3/2, 7/3). (Giacomelli-Gnann-Otto, Nonlinearity 16)

That is to say, for every V > 0 there exists HV : R→ R, such that

h(t, x) = HV (x − Vt)

is a solution to the equation.

Matias G. Delgadino | PUC-Rio de Janeiro | September 9, 2020 14 / 32



On the relationship between the thin film equation and Tanners law

Non-Homogeneous: Travelling Wave

We have
HV (x) ∼ x+(V ln x)1/3 for x →∞

and HV satisfies Tanner’s law up to a logarithm

(H ′V (x))3 ∼ V (ln x) as x →∞.

Under our re-scaling HV converges to V 1/3x+, which satisfies Tanner’s
law.

uε(t, x) = εhε(ε7| ln ε|t, εx) = εHε7| ln ε|V (εx − ε7| ln ε|Vt)→ V 1/3x+.
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On the relationship between the thin film equation and Tanners law

Results for the non-homogeneous equation: Growth of the
support

Estimates for the growth of the apparent support (Giacomelli-Otto, CPAM
02).

After the re-scaling: there exists a C > 1 such that

C−1

(
t

| ln ε|
ln t + ln(ε7 ln ε)

)1/7

≤ |{uε > ε}| ≤ C

(
t

| ln ε|
ln t + ln(ε7 ln ε)

)1/7

.

for every t ∈ (C ,C/ε7| ln ε|).

The result is achieved by using Lagrangian coordinates and energy
inequalities.

A notion of apparent support is introduced (∼ {uε > ε}).
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On the relationship between the thin film equation and Tanners law

Our contribution: Key observation

We introduce a new notion of apparent support:

ρε = Bε(uε),

where

Bε(s) =
1

| ln ε|

[
s

ε
arctan

(ε
s

)
+

1

2
ln

(
1 +

(s
ε

)2
)]

.

Giacomelli-Otto use Lagrangian coordinates.
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On the relationship between the thin film equation and Tanners law

Properties of Bε and ρε

lim
ε→0

Bε(s) = 1 for any s > 0,

Bε′′(s) = − 1

| ln ε|
1

s2 + εs
,

ρε ∼


0 uε < ε

1− a uε ∼ ε1−a, a ∈ (0, 1)

1 uε ≥ 1
| ln ε| .

The choice of Bε is done so that we have simplification

∂tρ
ε ∼ −uεuεxuεxxx=̇T ε.
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On the relationship between the thin film equation and Tanners law

Ideally

ρε → ρ uε → u

ρ = χ{u(t)>0},

u is a solution of the Quasi-Static approx with Tanner’s law.

or

ρ is the indicator of a solution to the Quasi-Static approx with Tanner’s law.
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On the relationship between the thin film equation and Tanners law

Results

Lemma

{ρε} is relatively compact in Lp(W−1,1)

Pick εk → 0 such that
ρεk → ρ.

Remark: We can not expect equi-continuity of {uε}{ε>0} in any weak
norm. Droplets merging instantaneously implies the limit is not
continuous. (http://bit.ly/MergedDrops)
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On the relationship between the thin film equation and Tanners law

Results

Theorem (D., Mellet, to appear CPAM)

0 ≤ ρ ≤ 1 & ∂tρ ≥ 0.

For a.e. t, every accumulation point w of {uεk (t)} satisfies∫
Ω
w = 1, wxxx = 0 on {w > 0},

{w > 0} ⊂ {ρ = 1}o & ∂{w > 0} ⊂ ∂({ρ = 1}o).

We can pick a selection of accumulation points w̃ , such that

∂t

∫
Ω
ρ ≥

∫
∂{w̃>0}

|w̃x |3

3
dH0 in M+(0,T ).
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On the relationship between the thin film equation and Tanners law

Corollary

Corollary

If {ρ = 1}o = (a, b), then uεk converges strongly to

w = 6
(b − x)+(x − a)+

(b − a)3
.

Corollary

∂t

∫
Ω
ρ ≥ 144

(∫
Ω
ρ

)−6

.
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On the relationship between the thin film equation and Tanners law

Comparisson with literature

Noticing that ∫
Ω
ρε ≤ |{u > ε}|+ C

|Ω|
| ln ε|

.

We have

lim
ε→0
|{u(t) > ε}| ≥

∫
Ω
ρ(t) ≥ (1008 t + |{uin > 0}|7)1/7.
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On the relationship between the thin film equation and Tanners law

Strategy: A priori estimates

Using the equation

∂tu
ε + | ln ε|((uε3 + ε3−nuεn)uεxxx)x = 0.

Multiplying by uxx and integrating, we have the Energy inequality∫
|∂xu(T )|2 + 2| ln ε|

∫ T

0

∫
{u>0}

(u3 + εu2)|uxxx |2 ≤
∫
|∂xuin|2

For every t > 0, uε is pre-compact in C 0. Moreover, it converges in
C 2({u > 0}) to a parabola.

Lemma (Optimal regularity)

‖∂xu‖4
∞ ≤ C

(
1 + | ln ε|

∫
{u>0}

(u3 + εu2)|uxxx |2
)
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On the relationship between the thin film equation and Tanners law

Strategy: A priori estimates

Using the equation

∂tu
ε + | ln ε|((uε3 + ε3−nuεn)uεxxx)x = 0.

Multiplying by B ′ε(u
ε) and integrating, we have the Entropy inequality∫

ρεin + 2

∫ T

0

∫
u|uxx |2 ≤

∫
ρε(T )

≤ 2|Ω|.

Observation: Bε is chosen with this cancellation in mind.
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On the relationship between the thin film equation and Tanners law

Strategy

Analyze the time derivative of ρε:

∂tρ
ε = ∂xR

ε + T ε

where

Rε = −| ln(ε)|Bε′(uε)(ε3−nuε(n−1) + uε2)uεuεxxx

T ε = −uεuεxuεxxx .

Lemma

lim
ε→0

∂xR
ε = 0 in L2(0,T ;W−1,1).
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On the relationship between the thin film equation and Tanners law

Strategy

Hence, ∂tρ
ε ∼ −uεuεxuεxxx .

Integrating by parts∫
ρε(t)φ ∼

∫ t

0

(∫
u|uxx |2φ−

5

6

∫
u3
xφx −

1

2

∫
u|ux |2φxx

)
+

∫
ρεinφ.

By a-priori estimates, we can show that if uε(t)→ w(t), then

lim
ε→0
−5

6

∫
u3
xφx −

1

2

∫
u|ux |2φxx = −5

6

∫
w3
x φx −

1

2

∫
w |wx |2φxx

and

lim inf
ε→0

∫
u|uxx |2φ ≥

∫
{w>0}

w |wxx |2φ.
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On the relationship between the thin film equation and Tanners law

Strategy

By Fatou’s lemma∫
ρ(t)φ ≥

∫ t

0

(∫
{w>0}

w |wxx |2φ−
5

6

∫
w3
x φx −

1

2

∫
w |wx |2φxx

)
+

∫
ρinφ.

Using that wxxx = 0 on {w > 0}, we have∫
ρ(t)φ ≥

∫ t

0

(∫
∂{w>0}

|wx |3

3
φ dH0

)
+

∫
ρinφ

This is the inequality form for Tanner’s law.

It follows ∂tρ ≥ 0. Also, if ρ(x) = 1, then ∂tρ(x) = 0, which implies
x /∈ ∂{w > 0} and the properties for w follow.
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On the relationship between the thin film equation and Tanners law

Main Obstacles

uε is not even uniformly weakly continuous in time:

Droplets merge at a different time-scale. No easy compactness to
identify w .

We can not identify w by its mass on each connected component:

Ostwald Ripening: mass can flow from ”disconected” droplets,
without merging. (Glasner, Otto, Rump, Slepcev, EJPAM 09)

Matias G. Delgadino | PUC-Rio de Janeiro | September 9, 2020 29 / 32



On the relationship between the thin film equation and Tanners law

Main Obstacles

uε is not even uniformly weakly continuous in time:

Droplets merge at a different time-scale. No easy compactness to
identify w .

We can not identify w by its mass on each connected component:

Ostwald Ripening: mass can flow from ”disconected” droplets,
without merging. (Glasner, Otto, Rump, Slepcev, EJPAM 09)

Matias G. Delgadino | PUC-Rio de Janeiro | September 9, 2020 29 / 32



On the relationship between the thin film equation and Tanners law

Main Obstacles

uε is not even uniformly weakly continuous in time:

Droplets merge at a different time-scale. No easy compactness to
identify w .

We can not identify w by its mass on each connected component:

Ostwald Ripening: mass can flow from ”disconected” droplets,
without merging. (Glasner, Otto, Rump, Slepcev, EJPAM 09)

Matias G. Delgadino | PUC-Rio de Janeiro | September 9, 2020 29 / 32



On the relationship between the thin film equation and Tanners law

Main Obstacles

uε is not even uniformly weakly continuous in time:

Droplets merge at a different time-scale. No easy compactness to
identify w .

We can not identify w by its mass on each connected component:

Ostwald Ripening: mass can flow from ”disconected” droplets,
without merging. (Glasner, Otto, Rump, Slepcev, EJPAM 09)

Matias G. Delgadino | PUC-Rio de Janeiro | September 9, 2020 29 / 32



On the relationship between the thin film equation and Tanners law

Main Obstacles

We can not show

lim
k→∞

∫ T

0

∫
uεk |uεkxx |2 =

∫ T

0

∫
{w>0}

w |wxx |2.

It scales like the Lipschitz norm and formally is slightly weaker than
the dissipation:

If
u = x+ log1/3(x),

then dissipation is bounded, but∫
u|uxx |2 =∞.
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On the relationship between the thin film equation and Tanners law

Conditional result

If the wetted region is a single interval

{ρ = 1} = (a(t), b(t)) for all t > 0,

then can identify w explicitly.

Moreover, if

lim
k→∞

∫ T

0

∫
uεk |uεkxx |2 =

∫ T

0

∫
{w>0}

w |wxx |2,

then ρ satisfies Tanner’s law.
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On the relationship between the thin film equation and Tanners law

That’s it for now!

Thank you!
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