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Mixing and Enhanced Dissipation

Navier-Stokes Equation

In Ω ⊂ Rd (d = 2, 3), we consider the equation for an incompressible fluid{
∂tu + (u · ∇)u +∇p = ν∆u + f ,
∇ · u = 0.

(NSE)

u is the velocity field of the fluid

p is the scalar pressure

ν ≥ 0 is the inverse Reynolds number

f is an external forcing term

We are interested in the dynamics at high Reynolds number ν � 1.
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Mixing and Enhanced Dissipation

Vorticity fomulation in 2d

For d = 2, we consider the vorticity ω = −∂yu1 + ∂xu2 = ∇⊥ · u.

{
∂tω + u · ∇ω = ν∆ω + g ,

u = ∇⊥ψ, ∆ψ = ω. (Bio-Savart law)

Question

Given a steady state (uS , ωS), what can we say about its stability?
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Mixing and Enhanced Dissipation

Linearizing

We write ω = ωS + ω̃, to first order{
∂t ω̃ + uS · ∇ω̃ + u · ∇ωS = ν∆ω̃,

u = ∇⊥ψ̃, ∆ψ̃ = ω̃.
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Mixing and Enhanced Dissipation

Shear flows

Shear flows are a special class of steady state solutions:

uS = (u(y), 0)

ωS = −u′(y)

f = −ν(u′′(y), 0).

Then {
∂t ω̃ + u∂xω − u′′∂x ψ̃ = ν∆ω̃,

ψ̃ = ∆−1ω̃.
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Mixing and Enhanced Dissipation

Decay

In abstract terms
∂t ω̃ + Bω̃ + νAω̃ = 0,

B = u∂x − u′′∂x∆−1 A = −∆.

We need an inner product such that B is antisymmetric and A is
symmetric positive definite. (This is also the framework of Villani’s
hypocoercivity functional.)

Question

Does w̃ decay to zero? In which sense? If we know decay for ν = 0,
under which conditions can we use it for ν > 0?
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Mixing and Enhanced Dissipation

Examples

Special examples of shear flows:

Monotonic: u′ > 0 in T×R or T× [−1, 1]. Changing coordinates, we
get close to Couette flow u(y) = y :

∂tω + y∂xω = 0.

Strictly convex: u′′ > 0 in T× R or T× [−1, 1]. The operator
u∂x − u′′∂x∆−1 is anti-symmetric w.r.t.

〈φ1, φ2〉 =

∫
φ1φ2

u′′(y)
dxdy .

Kolmogorov flow: u(y) = sin y in T2. The operator sin y∂x(1 + ∆−1)
is anti-symmetric w.r.t.

〈φ1, φ2〉 =

∫
(1 + ∆−1)φ1φ2dxdy .
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Mixing and Enhanced Dissipation

Mixing estimates

Meta-Theorem

For ν = 0, we have an estimate of the form

‖w̃(t)− Pw̃in‖H−1 .
1

tp
‖w̃in − Pw̃in‖H1 .

Smaller and smaller scales are formed in the inviscid problem!

Question (Relaxation/Metastability)

How can we use this estimate to show that for ν > 0

‖w̃ν(t)− etν∆Pw̃in‖2
L2 . e−tν

q‖w̃in − Pw̃in‖2
L2 ,

for q(p) ∈ (0, 1) (faster than the heat equation time scale)?
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Mixing and Enhanced Dissipation

Transport Equation

Given divergence-free u and mean-free f in

consider

∂t f + u · ∇f = 0, f (0) = f in.

Figure: From E Lunasin, Z Lin, A Novikov, A Mazzucato, C. Doering

Smaller and small length scales appear (“cascade”)
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Mixing and Enhanced Dissipation

Mixing

By the divergence free condition, ‖f (t)‖L2 = ‖f in‖L2 for all t.

Bounding,
‖f in‖2

L2 = ‖f (t)‖2
L2 ≤ ‖f (t)‖H−1‖f (t)‖H1

Hence,
‖f in‖2

L2

‖f (t)‖H−1

≤ ‖f (t)‖H1 .

Small H−1 norm, implies growth in H1.

In 2d, ‖f (t)‖H−1 has the units of length (Lin, Thiffeault, Doering ‘11). It
provides an averaged measure of the characteristic length-scale of the
solution. Small H−1, implies “small length scales”.
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Mixing and Enhanced Dissipation

Enhanced dissipation

For the viscous problem

∂t f
ν + u · ∇f ν = ν∆f ν , f ν(0) = f in,

by the divergence free condition

1

2

d

dt
‖f ν − Pf ν‖2

L2 + ν‖f ν − Pf ν‖2
H1 = 0,

hence
‖f ν(t)− etν∆Pf in‖L2 ≤ e−νt‖f in − Pf in‖L2 .

This is the Heat equation time scale 1
ν . Independent of u!

Question

Can we do better?
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Mixing and Enhanced Dissipation

Enhanced Dissipation

Definition

u is called relaxation enhancing if ∀δ > 0, there exists ν0 = ν0(δ) such
that for any ν < ν0 and any f in ∈ L2 we have

‖f ν(1/ν)‖L2 < δ‖f in‖L2 .

i.e. Dissipation happens at a faster time scale than the heat equation time
scale 1

ν .

Theorem (Constantin, Kiselev, Ryzhik, Zlatos (2005))

The operator B = u · ∇ has no H1 eigenfunctions, if and only if, u is
relaxation enhancing.

Mixing implies B = u · ∇ has no H1 eigenfunctions.
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Mixing and Enhanced Dissipation

Some inviscid results

For passive scalar: ∂t f + u∂x f = 0, where u has a finite number of critical
points, with u′ vanishing at order n0 ∈ N:

Which Who When H−1 # of pages

u(y) = y Kelvin 1887 1/t 1/2

u(y) Bedrossian, Coti Zelati 2015 1/t
1

n0+1 1

For B = u∂x − u′′∂x∆−1:

Which Who When H−1 # of pages

u mono, u′′ small Zillinger 2015 1/t 49

u monotone Wei, Zhang et al 2015 1/t 56+76

u(y) = sin y Wei, Zhang, et al 2017 1/t 92
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Mixing and Enhanced Dissipation

Some viscous results

For passive scalars: ∂t f + u∂x f = ν∆f , where u has a finite number of
critical points, with u′ vanishing at order n0 ∈ N:

Which Who When ν > 0, L2

u(y) = y Kelvin 1887 e−ν
1/3t

u(y) = sin y Beck, Wayne 2013 e−ν
1/2t

u(y) Bedrossian, Coti Zelati 2015 e−ν
n0+1
n0+3 t

Weirestrass function Wei 2018 e−| ln ν|
−1t

For ∂tω + Bω = ν∆ω on T2:

Which Who When ν > 0, L2

u(y) = sin y Ibra., Maek., Masm. 2017 e−ν
1/2t

u(y) = sin y Wei, Zhang, Zhao 2017 e−ν
1/2t
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Mixing and Enhanced Dissipation

Our contribution

Theorem

If u ∈ L∞t W 1,∞
x

and the inviscid problem satisfies

‖f (t)‖H−1 ≤ %(t)‖f in‖H1

then

if %(t) ∼ t−p (polynomial mixing), then

‖f ν(t)‖L2 ≤ e−c0ν
qt‖f in‖L2 , q =

2

2 + p
.

if %(t) ∼ e−t (exponential mixing), then

‖f ν(t)‖L2 ≤ e−c0| ln ν|−2t‖f in‖L2 .
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Mixing and Enhanced Dissipation

Our contribution: more in general

Given a Hilbert space H, we can replace the −∆ by A a positive compact
and self-adjoint operator.

A induces the Sobolev space:

‖f ‖Hs = ‖As/2f ‖H .
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Mixing and Enhanced Dissipation

Our contribution: more in general

We can replace u · ∇ by B(t), such that it is antisymmetric and there
exists cB and s0 > 0 satisfying

‖B(t)f ‖H ≤ cB‖f ‖Hs0 & |Re〈B(t)f ,Af 〉| ≤ cB‖f ‖2
H1 .

If B = u · ∇ with u divergence free, then

|〈B(t)f ,Af 〉| =

∣∣∣∣∫ u · ∇f (−∆)f dx

∣∣∣∣
=

∣∣∣∣∫ ∇u[∇f ,∇f ] + u · ∇|∇f |
2

2
dx

∣∣∣∣
≤ ‖u‖

L∞t W 1,∞
x
‖f ‖2

H1 .
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Mixing and Enhanced Dissipation

Our contribution: In general

Theorem

Under the previous assumptions. If the inviscid problem ∂t f + B(t − t0)f
satisfies

‖f (t)‖H−1 ≤ %(t)‖f in‖H1 for any t0 > 0,

then the viscous problem ∂t f
ν + Bf ν + νAf ν = 0 satisfies:

if %(t) ∼ t−p, then

‖f ν(t)‖L2 ≤ e−c0ν
qt‖f in‖L2 , q =

2

2 + p
.

if %(t) ∼ e−t , then

‖f ν(t)‖L2 ≤ e−c0| ln ν|−2t‖f in‖L2 .
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Mixing and Enhanced Dissipation

New Applications

Spiral Flow (B = u∂x , A = −∆):

u(r , θ) = r1+α(− sin θ, cos θ) with α ≥ 1.

Use mixing estimate by Crippa, Lucà, Schulze (α = 1), or ours (for α ≥ 1).

‖f ν(t)‖L2 ≤ e−c0ν
qt‖f in‖L2 , q =

4− pα
4 + pα

with p =
2

max{α, 2}
.
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Mixing and Enhanced Dissipation

New applications

Fractional Dissipation (B = u∂x , A = (−∆)γ/2):

∂t f
ν + u∂x f ν + ν(−∆)γ/2f ν = 0.

‖f ν(t)‖L2 ≤ e−c0ν
qt‖f in‖L2 , q =

2

2 + γ
2(n0+1)

.
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Mixing and Enhanced Dissipation

Kolmogorov flow

Kolmogorov Flow (B = sin(y)∂x(I + ∆−1), A = (−∆)):

∂t f
ν + sin(y)∂x(I + ∆−1) + ν(−∆)f ν = 0.

Using the mixing estimate (Wei, Zhang, Zhao (2017))

‖f ν(t)‖L2 ≤ e−c0ν
−3/5t‖f in‖L2 .

Worse than the time scale ν−1/2 by Ibrahim, Maekawa, Masmoudi or Wei,
Zhang, Zhao (2017).
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Mixing and Enhanced Dissipation

Exponential Mixing

Question

Is there any example of exponentially mixing flows?

Yes, for Td with d ≥ 2 there exists a time dependent flow u ∈ L∞t W 1,r
x

that mixes arbitrary initial data exponentially based on Baker’s map.
(Elgindi, Zlatos 2018).
The flow is not Lipschitz, we can not use∣∣∣∣∫

Td

u · ∇f (−∆)f dx

∣∣∣∣ ≤ ‖u‖L∞t W 1,∞
x
‖f ‖2

H1 .

Using our ideas we can get

‖f ν(t)‖L2 ≤ e−| ln ν|
−2ν

1
r−1 t‖f in‖L2 .
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Mixing and Enhanced Dissipation

Exponential Mixing

Question

Is there any example of exponentially mixing flows, that satisfies our
hypothesis?

Yes, contact Anosov flows (Liverani 2003).The geodesic flow of any
negatively curved manifold is an example.

The geodesic flow acts on the unit tangent bundle of the manifold, hence
we are working on dimension 3 or higher.
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Mixing and Enhanced Dissipation

Triple Linkage

Question

Is there any concrete examples?

Yes, Triple Linkage (Hunt MacKay 2003). (Video
https://www.youtube.com/watch?v=aVjj6VE-tNg)

Figure: From Hunt MacKay
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Mixing and Enhanced Dissipation

Triple Linkage

Figure: From Hunt MacKay
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Mixing and Enhanced Dissipation

Estimates

Time to do some math!

∂t f + u · ∇f = 0

∂t f
ν + u · ∇f ν = ν∆f ν .

‖f (t)‖L2 = ‖f in‖L2 , ∀t ≥ 0;
d
dt ‖f

ν‖2
L2 + 2ν‖f ν‖2

H1 = 0;
d
dt ‖f

ν‖2
H1 + 2ν‖f ν‖2

H2 ≤ 2‖∇u‖∞‖f ν‖2
H1 ;

d
dt ‖f

ν − f ‖2
L2 ≤ 2ν‖f ν‖H2‖f ‖L2 − 2ν‖f ν‖2

H1 .
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Mixing and Enhanced Dissipation

Observation

We have the estimate

‖f ν(t)‖L2 ≤ e−Cν
qt‖f in‖L2 ,

if and only if,
‖f ν(1/νq)‖L2 ≤ (1− δ)‖f in‖L2

if and only if,

ν

∫ ν−q

0
‖f ν(t)‖2

H1dt ≥ δ‖f in‖L2 .

We have just integrated

d

dt
‖f ν‖2

L2 + 2ν‖f ν‖2
H1 = 0.
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Mixing and Enhanced Dissipation

Contradiction argument

W.L.O.G. ‖f in‖2
L2 = 1.

Towards a contradiction, assume that

ν

∫ ν−q

0
‖f ν(t)‖2

H1dt < δ.

We can find τ0 such that

ν‖f ν(τ0)‖2
H1 < 4δνq, ν

∫ τ0+ν−q/2/2

τ0

‖f ν(s)‖2
H1ds < 2δνq/2,

We found a time interval where ‖f ν(t)‖2
H1 is relatively small.
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Mixing and Enhanced Dissipation

Using the inviscid dynamics

If we tale f ν(τ0) as the initial condition of the inviscid problem, we can
estimate that

‖f ν(τ0 + t)− f (τ0 + t)‖2
L2 ≤

1

4
, ∀t ∈

[
0,

1

2
ν−q/2

]
.

We want to use the mixing estimate, to show that ‖f ν(t)‖2
H1 can not be

too small.

We do this by looking at the energy accumulated in the high modes.
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Mixing and Enhanced Dissipation

Inviscid mixing

Also, if P≤R if the projection onto the span of the eigenfunctions of A
corresponding to |λ| ≤ R

‖P≤R f (τ0 + t)‖2
L2 ≤ R‖f (τ0 + t)‖2

H−1

≤ R

t2p
‖f ν(τ0)‖2

H1 ≤ δνq(p+1)−1R.

Then, by L2 conservation

‖(I − P≤R)f (τ0 + t)‖2
L2 ≥ 1− δνq(p+1)−1R.

Hence, by proximity of the two flows

‖(I − P≤R)f ν(τ0 + t)‖2
L2 ≥

1

2

(
1− δνq(p+1)−1R

)
,

Finally

‖f ν(τ0 + t)‖2
H1 ≥ R‖(I − P≤R)f ν(τ0 + t)‖2

L2 ≥
R

2

(
1− δνq(p+1)−1R

)
.
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Mixing and Enhanced Dissipation

Conclusion

Optimizing over R

‖f ν(τ0 + t)‖2
H1 ≥

1

δνq(p+1)−1
.

Integrating over
(

1
4ν
−q/2, 1

2ν
−q/2

)
2δνq/2 ≥ ν

∫ 1
2
ν−q/2

1
4
ν−q/2

‖f ν(τ0 + t)‖2
H1dt >

ν−q/2

δνq(p+1)−2
.

By our choice q(p + 2)− 2 = 0, we get the contradiction

δ2 > 1/2.
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Mixing and Enhanced Dissipation

Open questions

Question

Are our rates sharp?

Unclear at this level of generality.

Question

Does a rate of enhanced dissipation imply mixing of the fluid flow?

CKRZ enhanced dissipation show an if and only if statement.

Question

Is there Lipschitz regular, exponentially mixing flows in T2?
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Mixing and Enhanced Dissipation

That’s it for now!

Thank you!
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