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Functional Analysis

Compactness

Sobolev spaces allow to measure regularity in an integral way versus
pointwise bounds for C%.

They are also a great way to obtain compactness:

Theorem

Given a tight sequence in {f;};en C L2. If

sup [|fill i < o0

then {f;}nen admits a strongly convergent subsequence in 2.
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Compactness

Proof.

Theorem (Riesz-Kolmogorov)
For 1 < p < 0o, a family {f:};c; is pre-compact in L2(R"), iff,

m /t is Bounded
sngﬁHL2<ioo

m /t is equi-continuous:

sup [fi(- + ) = £i( )iz = 0.

m It is tight: for every € > 0 there exists a compact set K C R" such

that
sup/ f]? <e.
/ c
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Functional Analysis

Sobolev Spaces

Definition

Given and open set Q, k €N, p € [1,00] and f € L} (). We say that
f € WKP_if f is k-times weakly differentiable and D*f € LP(Q) for
every |a| < k.And we define the norm

11y = D IDFIIZ-
laf<k
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Sobolev Spaces

Theorem

If boundary of Q is C! and 1 < p < oo, then C®(Q) N WHP(Q) is dense
in WkP(Q).

The guiding principle for proofs in Sobolev spaces is to prove it for smooth
functions and the extend it by a density argument.
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Sobolev Space

We can ask ourselves what happens in 1-d.

Theorem
If f € WLP((0,1)), then f € C*([0,1]) witha =1—1/p.

Remark: We can even define the value of f at the boundary.
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Sobolev Spaces

Functions in Sobolev Spaces can be evaluated in measure zero sets.

Theorem (Trace Theorem)

Let Q C R" be open, bounded and with C* boundary. Then there exists
a (unique) bounded linear operator

tr: WHP(Q) — LP(99)

so that -
tr(u) = ulaq Yu e COQ) N WhP(Q).

Remark: The trace operator is not surjective.Example of the Laplace
problem in a Domain.
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Sobolev Space

Theorem (Extension theorem)

Let Q C R" open, bounded and with C' boundary. Then for every
p € [1,00] there exists (not unique) a bounded linear operator:

E : WkP(Q) = WHKP(R")

so that
Eflo=f
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Sobolev Spaces

Sketch of Proof.

Two steps prove the theorem for smooth functions and then extend it by
continuity/density.

For the first part we can use partition of unity to localize and
diffeomorphisms to flatten the boundary locally, reducing ourselves to
half balls.
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Sobolev Spaces

One of the most important subsets of a given Sobolev space is the zero
trace class Wok’p:

Theorem

Let Q be bounded with C* boundary. Then f € W5P(Q) has
tr(f) = 0 € LP(Q2), if and only if, f can be approximated by compactly
supported smooth functions C2°(2).
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Functional Analysis

Sobolev Spaces

Trivially we know that
WLP(Q) C LP(Q).

Moreover, in 1-d we saw that

WP((0,1)) € C*([0,1]) cc L*°((0,1)) C LP((0,1)).

In this class we will focus on two things:

m What is the optimal g such that W1P C L9 with a continuous
embedding?

m Is the embedding WP C LP compact?
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Functional Analysis

Sobolev Spaces

A reasonable way to look at the embedding is to look at scalings or
equivalently singularity.

If we are trying to show a bound of the form
11l Larry < CIVFI| ooy,

then it has to be stable under scalings. i.e. the constant has to be
independent of A > 0

A4 F |l raqray = 16 llLa@ny < CIVA o@ry = CAT 2|V F]| ogny
where

fi(x) = f(Ax)
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JFunctonalAnalvsis
Sobolev Spaces

If the inequality holds for any f
£l Larry < CIVF| Lo(mny,

then, we also know that for an specific f and every A > 0:

1_n)\4n
1Fllzoan < CACTE)FE 10 F Lo,

Either taking A — oo or A — 0, we notice that this inequality can hold
only if

Ln_.n
p q
or
np
q: I« —
n—p
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Functional Analysis

Sobolev Spaces

The same analysis follows if we look at the type of acceptable singularities
or decay at infinity:

x|*xE, € WEP(RY)  iff  s>1——.
x|°xs, € LIR")  iff s> L.
q
IX[°xgs € WPP(RT)  iff  s<1— <.
p

IX[°xgs € LR iff  s< -2

From this relationships we can obtain that we can satisfy the inequality
only if g = p,.
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Sobolev Spaces

Theorem (Sobolev-Gagliardo-Niremberg)
For any 1 < p < n exists C(p, n) € (0,00), such that
11| Lox ®ny < CIVFLo(mn),
with
np
n—p

P« =

Remark: It is not valid for p = n and p, = co. For n > 1, W1" embeds
into BMO a non-trivial subset of L°.

Example: In 2d,

f = (log(1/r))3xs, € H*(R?).
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Sobolev Spaces

Corollary

Let 1< p < n, p. = np/(n— p), and Q and open bounded set with C*
boundary. Then, for every 1 < q < px, there exists C(p, q, n) such that

1f1la@) < Cllifllwre)-
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Sobolev Space

Proof of Corollary.

We require a C! boundary to be able to use the extension:

E: WhP(Q) — WEHP(RM)

1_ 1 1_1
N

[fllcag@y < 1Q2/a 2= [l Lo (@) <[] P || EF| pe (mr)

1_1 1_1
< Qa7 P Csan || VEF|o(mny < [2] e P+ Cson Cellfllwrr(a)
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Functional Analysis

Sobolev Spaces

Proof of SGN inequality.
Same philosophy as always, prove it for smooth functions and extend it

by density.
We need to show that there exists C(p, n) such that

[fllee < CIIVElle Ve C(RT)

Most tractable case, n=2 and p = 1:

|u(x1, x2)| < / |O1u(t, x2)| dt or / |Oau(x1, t)| dt
R R
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Sobolev Spaces

Proof of SGN inequality.
Multiplying the inequalities:

| X1,X2 </ |81u t X2 | dt> (/ |82u X1, t | dt)

Integrating
/ lu(xt, )2 dsadbor < </ Oru(t, )| dtdxz> </ Oou(sa, )| dtdsa
R2 R2 R2

lul[Z2(R?) < [IVul[f: (R?).
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Sobolev Spaces

Proof of SGN inequality.
Forp=1land n=3

u(xt, 2, x3)|2 < (A(x2, x3) Fax1, x3) Fs(x1, x2)) /2

= </R|8;u(t,§<,-)| dt>

Integrating, in the first variable

where
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Sobolev Spaces

Proof of SGN inequality.

Integrating, in the first variable and doing Cauchy-Schwarz

3
/ |LI(X]_,X2,X3)|§ Xm

1/2 1/2 1/2
< 77 (x2, x3) (/ f(x1,x3) Xm) (/ f3(x1, x2) dxl)

Repeating the process, we obtain the inequality

3 3
[l o< 19l s
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Sobolev Spaces

Proof of SGN inequality.

A similar argument yields

17 < 9l

Remark: This is not the optimal constant! It is given by the
isoperimetric inequality

n—1
< 1/7-t (99).
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Functional Analysis

Sobolev Spaces

For the general SGN inequality consider u?, such that

n np
p .
n—1 n—p

2
I
*
I

By the case p =1,

n—1

</) "< [19@)I = [t
< ( / |u\q<v—l>>‘l’ Vel

where 1/p+1/q =1.
Magic happens g(y — 1) = p.
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Sobolev Spaces

Corollary
Let Q2 be bounded, there exists C(S2) such that

lulloy < ClIVullm@ — Vu e WaP(Q).

Remark: In particular, up to constant we can change the norm in
W, P(Q) to be
lull oy = IV8log@):
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Sobolev Spaces

Proof of Corollary.

We know that C2°(Q) dense in W, P(Q), then for any u € C2°(Q) we
can trivially extend by zero, i.e. u € C°(R").

11 1_ 1
ullp@) < (202 P« ||l ex (@) <[22 P [[ull Lo (mry

1
< Cson |22+ || Vul| .
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Sobolev Spaces

Theorem (Rellich-Kondrachov)

Let Q be a bounded set with 9Q C', and 1 < p < n. Then, the
embedding WYP(Q) — L9(Q) is compact for any 1 < q < p.
i.e. given a sequence {u,} C WHP(Q) if

sup |[unlwie(e) < o0,

then it admits a strongly convergent subsequence in L9(Q).

Remark: It is not valid for g = ps, but you can characterize the behavior
exactly.
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Functional Analysis
Proof.

From the Riesz-Kolmogorov theorem (we have used an extension), we
need to check boundedness, equi-continuity and tightness.Boundedness
and tightness, follow from the bound on the WP norm and
compactness of €, respectively.

For g = p, we have

1
/ lu(x 4+ h) — u(x)|P dx < / / |0ru(x + th)|P dx < thVqup.
Q QJo

Equi-continuity in LP follows from a uniform bound on W1P(Q).

For g < p we need to add an extra Holder inequality and use the domain
is bounded.

For p < g < p. we need to use the interpolation inequality

lun — ulla < [lun — ullzzM|up — ullZe. < BVl
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Functional Analysis

Compactness can be used to derive the following inequality

Theorem (Poincare Inequality)

Let Q be a bounded set with C1 boundary and connected. Then exists
C(Q, p) such that

lu—Tallp) < ClIVulliee)  Yu € WHP(Q).

_ 1 /
ug = — | udx.
Q| Jo

where
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Functional Analysis

Corollary

Let 1 < p < co. Then exists C(n, p) such that

U= Tg, (xo)ILr (B, (x0)) < CrlIVUllLo(B,(x0)-

Proof Corollary.
Use the constant for Q2 = B1(0), then scale and translate. O
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Functional Analysis

Proof of Poincare’s Inequality.

The idea is to use compactness, similar to the proof that all norms in R”
are equivalent.
WLOG, we reduce ourselves to average zero functions and we want to
find

[ullee < ClVullre.

We can characterize

Cl= inf |Vul.
{ullullp=1}

By Rellich-Kondrachov, the minimizing sequence admits a limit that
belongs to the set {||ul|.» = 1}, hence it can not be trivial.
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Functional Analysis

Definition
Let Q be open and « € (0,1].

CoQ) ={ue C%Q): sup JuCx) = u(y)] < oo}
X, yEQ ’X_y‘a

is a Banach space with norm

[ull co.ec = llullioe + [u]con
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Functional Analysis

Theorem

Given Q with a C' boundary and u € LP(Q), then u € C%%(Q) if and
only if

1/p

int _ —(n+pa — P
[u]p,p+m = sup r ) |u— Ty, < 00.
xeQ, r>0 QNBr(x0)

This implies that [u] . ~ [u]co.o.
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Functional Analysis

As a consequence we obtain

Theorem (Morrey's Enbedding Theorem)
Let Q be bounded with a C* boundary and n < p < co. Then

WEP(Q) — C%(Q)

with0 <a*=1—-n/p<1.

Remark: Using that C%%(Q) < C%%(Q) is compact, we obtain
compactness.
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Functional Analysis

Morrey's embedding Theorem.

We want to estimate
|u(x) = u(y)| < Clx = y[*"P|[Vu||o.
We consider a ball B of radius |x — y| that contains both
u(x) — u(y)| < |u(x) —Us| + u(y) — Us]
We need to show that for any x € B with radius ry

u(x) — 1| < Cre™"P||Vul|»
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Functional Analysis

Morrey's embedding Theorem.

- g1 f,] < g ) - w2 o

2[7
o 1) - u(a)]
2rg Bg,O(X)

|u(x) —us| < |u

<
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Functional Analysis

Morrey's embedding Theorem.

Using polar coordinates z = tw then
t 2ry
lu(x) —u(2)| < / |Vu(xo + sw)| ds < / |Vu(xo + sw)| ds
0 0

then
2n

on 2ry 2ry
2 () —u(z)| dz < —2— / / / IV u(x0-+5w)| dsdodt
| B2r0 | Bary (%) | B2ro | 0 S Jo

Applying Fubini

2" 2" r

lu(x) — u(z)| dz < |Vu| dx

|B2f0| BZrO(X) |BZr0| B2r0

U
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Functional Analysis

Morrey's embedding Theorem.

Finally, applying Holder

2n+1

O/ [Vul dx < C r0|B2r0|1 VPV ull o = Cor™"P||Vu] .
|B2ro| Bary |B r0|

O
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