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Functional Analysis

Compactness

Sobolev spaces allow to measure regularity in an integral way versus
pointwise bounds for Cα.

They are also a great way to obtain compactness:

Theorem

Given a tight sequence in {fi}i∈N ⊂ L2. If

sup ‖fi‖H1 <∞

then {fi}n∈N admits a strongly convergent subsequence in L2.
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Functional Analysis

Compactness

Proof.

Theorem (Riesz-Kolmogorov)

For 1 ≤ p <∞, a family {fi}i∈I is pre-compact in L2(Rn), iff,

It is Bounded
sup
I
‖fi‖L2 <∞.

It is equi-continuous:

sup
I
‖fi (·+ h)− fi (·)‖L2 → 0.

It is tight: for every ε > 0 there exists a compact set K ⊂ Rn such
that

sup
I

∫
K c

|fi |2 ≤ ε.
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Functional Analysis

Sobolev Spaces

Definition

Given and open set Ω, k ∈ N, p ∈ [1,∞] and f ∈ L1
loc(Ω). We say that

f ∈W k,p, if f is k-times weakly differentiable and Dαf ∈ Lp(Ω) for
every |α| ≤ k .And we define the norm

‖f ‖p
W k,p :=

∑
|α|≤k

‖Dαf ‖pLp .
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Functional Analysis

Sobolev Spaces

Theorem

If boundary of Ω is C 1 and 1 ≤ p <∞, then C∞(Ω) ∩W k,p(Ω) is dense
in W k,p(Ω).

The guiding principle for proofs in Sobolev spaces is to prove it for smooth
functions and the extend it by a density argument.
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Functional Analysis

Sobolev Space

We can ask ourselves what happens in 1-d.

Theorem

If f ∈W 1,p((0, 1)), then f ∈ Cα([0, 1]) with α = 1− 1/p.

Remark: We can even define the value of f at the boundary.
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Functional Analysis

Sobolev Spaces

Functions in Sobolev Spaces can be evaluated in measure zero sets.

Theorem (Trace Theorem)

Let Ω ⊂ Rn be open, bounded and with C 1 boundary. Then there exists
a (unique) bounded linear operator

tr : W 1,p(Ω)→ Lp(∂Ω)

so that
tr(u) = u|∂Ω ∀u ∈ C 0(Ω) ∩W 1,p(Ω).

Remark: The trace operator is not surjective.Example of the Laplace
problem in a Domain.
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Functional Analysis

Sobolev Space

Theorem (Extension theorem)

Let Ω ⊂ Rn open, bounded and with C 1 boundary. Then for every
p ∈ [1,∞] there exists (not unique) a bounded linear operator:

E : W k,p(Ω)→W k,p(Rn)

so that
Ef |Ω = f
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Functional Analysis

Sobolev Spaces

Sketch of Proof.

Two steps prove the theorem for smooth functions and then extend it by
continuity/density.

For the first part we can use partition of unity to localize and
diffeomorphisms to flatten the boundary locally, reducing ourselves to
half balls.
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Functional Analysis

Sobolev Spaces

One of the most important subsets of a given Sobolev space is the zero
trace class W k,p

0 :

Theorem

Let Ω be bounded with C 1 boundary. Then f ∈W k,p(Ω) has
tr(f ) = 0 ∈ Lp(Ω), if and only if, f can be approximated by compactly
supported smooth functions C∞c (Ω).
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Functional Analysis

Sobolev Spaces

Trivially we know that
W 1,p(Ω) ⊂ Lp(Ω).

Moreover, in 1-d we saw that

W 1,p((0, 1)) ⊂ Cα([0, 1]) ⊂⊂ L∞((0, 1)) ⊂ Lp((0, 1)).

In this class we will focus on two things:

What is the optimal q such that W 1,p ⊂ Lq with a continuous
embedding?

Is the embedding W 1,p ⊂ Lp compact?
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Functional Analysis

Sobolev Spaces

A reasonable way to look at the embedding is to look at scalings or
equivalently singularity.

If we are trying to show a bound of the form

‖f ‖Lq(Rn) ≤ C‖∇f ‖Lp(Rn),

then it has to be stable under scalings. i.e. the constant has to be
independent of λ > 0

λ−n/q‖f ‖Lq(Rn) = ‖fλ‖Lq(Rn) ≤ C‖∇fλ‖Lp(Rn) = Cλ1− n
p ‖∇f ‖Lp(Rn)

where
fλ(x) = f (λx)
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Functional Analysis

Sobolev Spaces

If the inequality holds for any f

‖f ‖Lq(Rn) ≤ C‖∇f ‖Lp(Rn),

then, we also know that for an specific f and every λ > 0:

‖f ‖Lq(Rn) ≤ Cλ

(
1− n

p

)
+ n

q ‖∇f ‖Lp(Rn).

Either taking λ→∞ or λ→ 0, we notice that this inequality can hold
only if

1− n

p
= −n

q

or
q = p∗ =

np

n − p
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Functional Analysis

Sobolev Spaces

The same analysis follows if we look at the type of acceptable singularities
or decay at infinity:

|x |sχB1 ∈W 1,p(Rn) iff s > 1− n

p
.

|x |sχB1 ∈ Lq(Rn) iff s > −n

q
.

|x |sχBc
1
∈W 1,p(Rn) iff s < 1− n

p
.

|x |sχBc
1
∈ Lq(Rn) iff s < −n

q
.

From this relationships we can obtain that we can satisfy the inequality
only if q = p∗.
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Functional Analysis

Sobolev Spaces

Theorem (Sobolev-Gagliardo-Niremberg)

For any 1 ≤ p < n exists C (p, n) ∈ (0,∞), such that

‖f ‖Lp∗ (Rn) ≤ C‖∇f ‖Lp(Rn),

with
p∗ =

np

n − p
.

Remark: It is not valid for p = n and p∗ =∞. For n > 1, W 1,n embeds
into BMO a non-trivial subset of L∞.

Example: In 2d,

f = (log(1/r))1/3χB1 ∈ H1(R2).
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Functional Analysis

Sobolev Spaces

Corollary

Let 1 ≤ p < n, p∗ = np/(n − p), and Ω and open bounded set with C 1

boundary. Then, for every 1 ≤ q ≤ p∗, there exists C (p, q, n) such that

‖f ‖Lq(Ω) ≤ C‖f ‖W 1,p(Ω).
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Functional Analysis

Sobolev Space

Proof of Corollary.

We require a C 1 boundary to be able to use the extension:

E : W 1,p(Ω)→W 1,p(Rn)

‖f ‖Lq(Ω) ≤ |Ω|
1
q
− 1

p∗ ‖f ‖Lp∗ (Ω) ≤ |Ω|
1
q
− 1

p∗ ‖Ef ‖Lp∗ (Rn)

≤ |Ω|
1
q
− 1

p∗ CSGN‖∇Ef ‖Lp(Rn) ≤ |Ω|
1
q
− 1

p∗ CSGNCE‖f ‖W 1,p(Ω)
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Functional Analysis

Sobolev Spaces

Proof of SGN inequality.

Same philosophy as always, prove it for smooth functions and extend it
by density.
We need to show that there exists C (p, n) such that

‖f ‖Lp∗ ≤ C‖∇f ‖Lp ∀f ∈ C∞c (Rn)

Most tractable case, n = 2 and p = 1:

|u(x1, x2)| ≤
∫
R
|∂1u(t, x2)| dt or

∫
R
|∂2u(x1, t)| dt
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Functional Analysis

Sobolev Spaces

Proof of SGN inequality.

Multiplying the inequalities:

|u(x1, x2)|2 ≤
(∫

R
|∂1u(t, x2)| dt

)(∫
R
|∂2u(x1, t)| dt

)
.

Integrating∫
R2

|u(x1, x2)|2 dx1dx2 ≤
(∫

R2

|∂1u(t, x2)| dtdx2

)(∫
R2

|∂2u(x1, t)| dtdx1

)
.

‖u‖2
L2(R2) ≤ ‖∇u‖2

L1(R2).
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Functional Analysis

Sobolev Spaces

Proof of SGN inequality.

For p = 1 and n = 3

|u(x1, x2, x3)|
3
2 ≤ (f1(x2, x3)f2(x1, x3)f3(x1, x2))1/2

where

fi =

(∫
R
|∂iu(t, x̂i )| dt

)
Integrating, in the first variable∫

|u(x1, x2, x3)|
3
2 dx1 ≤ f

1/2
1 (x2, x3)

∫
(f2(x1, x3)f3(x1, x2))1/2 dx1
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Functional Analysis

Sobolev Spaces

Proof of SGN inequality.

Integrating, in the first variable and doing Cauchy-Schwarz∫
|u(x1, x2, x3)|

3
2 dx1

≤ f
1/2

1 (x2, x3)

(∫
f2(x1, x3) dx1

)1/2(∫
f3(x1, x2) dx1

)1/2

Repeating the process, we obtain the inequality∫
R3

|u|
3
2 dx ≤ ‖∇u‖

3
2

L1(R3)
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Functional Analysis

Sobolev Spaces

Proof of SGN inequality.

A similar argument yields∫
Rn

|u|
n

n−1 dx ≤ ‖∇u‖
n

n−1

L1(Rn)
.

Remark: This is not the optimal constant! It is given by the
isoperimetric inequality

|Ω|
n−1
n ≤ 1

nω
1/n
n

Hn−1(∂Ω).
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Functional Analysis

Sobolev Spaces

For the general SGN inequality consider uγ , such that

γ
n

n − 1
= p∗ =

np

n − p
.

By the case p = 1,(∫
up∗
) n−1

n

≤
∫
|∇(uγ)| =

∫
|u|γ−1|∇u|

≤
(∫
|u|q(γ−1)

) 1
q

‖∇u‖Lp ,

where 1/p + 1/q = 1.

Magic happens q(γ − 1) = p∗
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Functional Analysis

Sobolev Spaces

Corollary

Let Ω be bounded, there exists C (Ω) such that

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω) ∀u ∈W 1,p
0 (Ω).

Remark: In particular, up to constant we can change the norm in
W 1,p

0 (Ω) to be
‖u‖

W 1,p
0 (Ω)

= ‖∇u‖Lp(Ω).
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Functional Analysis

Sobolev Spaces

Proof of Corollary.

We know that C∞c (Ω) dense in W 1,p
0 (Ω), then for any u ∈ C∞c (Ω) we

can trivially extend by zero, i.e. u ∈ C∞c (Rn).

‖u‖Lp(Ω) ≤ |Ω|
1
p
− 1

p∗ ‖u‖Lp∗ (Ω) ≤ |Ω|
1
p
− 1

p∗ ‖u‖Lp∗ (Rn)

≤ CSGN |Ω|
1
p
− 1

p∗ ‖∇u‖Lp .
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Functional Analysis

Sobolev Spaces

Theorem (Rellich-Kondrachov)

Let Ω be a bounded set with ∂Ω C 1, and 1 ≤ p < n. Then, the
embedding W 1,p(Ω) ↪→ Lq(Ω) is compact for any 1 ≤ q < p∗.
i.e. given a sequence {un} ⊂W 1,p(Ω) if

sup ‖un‖W 1,p(Ω) <∞,

then it admits a strongly convergent subsequence in Lq(Ω).

Remark: It is not valid for q = p∗, but you can characterize the behavior
exactly.
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Functional Analysis

Proof.

From the Riesz-Kolmogorov theorem (we have used an extension), we
need to check boundedness, equi-continuity and tightness.Boundedness
and tightness, follow from the bound on the W 1,p norm and
compactness of Ω, respectively.

For q = p, we have∫
Ω
|u(x + h)− u(x)|p dx ≤

∫
Ω

∫ 1

0
|∂tu(x + th)|p dx ≤ hp‖∇u‖pLp .

Equi-continuity in Lp follows from a uniform bound on W 1,p(Ω).

For q < p we need to add an extra Hölder inequality and use the domain
is bounded.

For p < q < p∗ we need to use the interpolation inequality

‖uh − u‖Lq ≤ ‖uh − u‖1−λ
Lp ‖uh − u‖λLp∗ ≤ h1−λ‖∇u‖Lp .
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Functional Analysis

Compactness can be used to derive the following inequality

Theorem (Poincare Inequality)

Let Ω be a bounded set with C 1 boundary and connected. Then exists
C (Ω, p) such that

‖u − uΩ‖Lp(Ω) ≤ C‖∇u‖Lp(Ω) ∀u ∈W 1,p(Ω).

where

uΩ =
1

|Ω|

∫
Ω
u dx .
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Functional Analysis

Corollary

Let 1 ≤ p <∞. Then exists C (n, p) such that

‖u − uBr (x0)‖Lp(Br (x0)) ≤ Cr‖∇u‖Lp(Br (x0).

Proof Corollary.

Use the constant for Ω = B1(0), then scale and translate.
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Functional Analysis

Proof of Poincare’s Inequality.

The idea is to use compactness, similar to the proof that all norms in Rn

are equivalent.
WLOG, we reduce ourselves to average zero functions and we want to
find

‖u‖Lp ≤ C‖∇u‖Lp .

We can characterize

C−1 = inf
{u:‖u‖Lp=1}

‖∇u‖Lp .

By Rellich-Kondrachov, the minimizing sequence admits a limit that
belongs to the set {‖u‖Lp = 1}, hence it can not be trivial.
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Functional Analysis

Definition

Let Ω be open and α ∈ (0, 1].

C 0,α(Ω) = {u ∈ C 0(Ω) : sup
x ,y∈Ω

|u(x)− u(y)|
|x − y |α

<∞}

is a Banach space with norm

‖u‖C0,α = ‖u‖L∞ + [u]C0,α
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Functional Analysis

Theorem

Given Ω with a C 1 boundary and u ∈ Lp(Ω), then u ∈ C 0,α(Ω) if and
only if

[u]intp,p+nα = sup
x∈Ω, r>0

(
r−(n+pα)

∫
Ω∩Br (x0)

|u − ux0,r |p
)1/p

<∞.

This implies that [u]intp,p+nα ∼ [u]C0,α .
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Functional Analysis

As a consequence we obtain

Theorem (Morrey’s Enbedding Theorem)

Let Ω be bounded with a C 1 boundary and n < p ≤ ∞. Then

W 1,p(Ω) ↪→ C 0,α∗(Ω)

with 0 < α∗ = 1− n/p ≤ 1.

Remark: Using that C 0,α∗(Ω) ↪→ C 0,α(Ω) is compact, we obtain
compactness.
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Functional Analysis

Morrey’s embedding Theorem.

We want to estimate

|u(x)− u(y)| ≤ C |x − y |1−n/p‖∇u‖Lp .

We consider a ball B of radius |x − y | that contains both

|u(x)− u(y)| ≤ |u(x)− uB |+ |u(y)− uB |

We need to show that for any x ∈ B with radius r0

|u(x)− uB | ≤ Cr
1−n/p
0 ‖∇u‖Lp
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Functional Analysis

Morrey’s embedding Theorem.

|u(x)− uB | ≤
∣∣∣∣u(x)− 1

|B|

∫
B
u

∣∣∣∣ ≤ 1

|B|

∫
B
|u(x)− u(z)| dz

≤ 2n

|B2r0 |

∫
B2r0

(x)
|u(x)− u(z)| dz
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Functional Analysis

Morrey’s embedding Theorem.

Using polar coordinates z = tω then

|u(x)− u(z)| ≤
∫ t

0
|∇u(x0 + sω)| ds ≤

∫ 2r0

0
|∇u(x0 + sω)| ds

then

2n

|B2r0 |

∫
B2r0

(x)
|u(x)−u(z)| dz ≤ 2n

|B2r0 |

∫ 2r0

0

∫
S

∫ 2r0

0
|∇u(x0+sω)| dsdωdt.

Applying Fubini

2n

|B2r0 |

∫
B2r0

(x)
|u(x)− u(z)| dz ≤ 2n+1r0

|B2r0 |

∫
B2r0

|∇u| dx
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Functional Analysis

Morrey’s embedding Theorem.

Finally, applying Hölder

2n+1r0
|B2r0 |

∫
B2r0

|∇u| dx ≤ Cn
2n+1r0
|B2r0 |

|B2r0 |1−1/p‖∇u‖Lp = Cnr
1−n/p‖∇u‖Lp .
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