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Functional Analysis

The space of test functions

Given Ω ⊂ Rn, we consider the topological vector space C∞c (Ω), with the
following notion of convergence:
Given {ϕn}n∈N ⊂ C∞c (Ω), we say that

ϕn →D ϕ,

if

All the supports of ϕn are contained in the same compact set⋃
suppϕn ⊂ K ⊂ Ω

ϕn and all its derivatives converge uniformly to ϕ:

‖Dαϕn − Dαϕ‖∞ → 0 ∀α.
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Functional Analysis

Distributions

Definition

T : C∞c (Rn)→ R is a distribution if

T is linear.

For every K ⊂⊂ Ω, exists C (K ) > 0 and N(k) ∈ N such that

|T (ϕ)| ≤ C sup
|α|≤N

‖Dαϕ‖∞ ∀ϕ ∈ C∞c (K ).

Remark: We say that a distribution T is of order N0 if the same N0

serves for all compact sets: T ∈ D′N0
(Ω).
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Functional Analysis

Distributions

Why do we care about distributions:

The space C∞c is one of the tiniest spaces we can consider, hence it’s
dual is huge.

In the same spirit as measures, they have good compactness
properties.

We can define the dual of all the continuous linear mappings from D
into itself. Like derivatives, convolution (mollificaiton) and Fourier
transform.
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Functional Analysis

Distributions

Definition (Distributional Derivative)

Given T ∈ D′, we define DαT ∈ D′ by

DαT (ϕ) = (−1)|α|T (Dαϕ).

Remark: Derivatives commute, because they commute for C∞ functions.
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Functional Analysis

Distributions

Examples:

The derivative of the Heavyside function is the delta.

We can take finite derivatives of a delta.

Matias G. Delgadino | University of Oxford | May 7, 2020 6 / 40



Functional Analysis

Tempered Distributions

There is a highlighted set within distributions, which is called tempered
distributions denoted by S ′(Rn) which is the dual of the Schwartz class
D(Rn) ⊂ S(Rn).
This is the class of rapidly decreasing functions

S(Rn) = {ϕ ∈ C∞ : sup
x
||x |kDαf (x)| <∞∀α & k ∈ N}
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Functional Analysis

Tempered Distributions

The main point to define this class is that it is preserved under the Fourier
transform:

F : S(Rn)→ S(Rn)

F(ϕ) = (2π)−n/2

∫
Rn

e−i〈x ,ξ〉ϕ(x) dx
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Functional Analysis

Tempered Distributions

By duality we can extend it to S ′ ⊂ D′.

By mollification arguments we notice that it coincides with the traditional
version, when the Fourier transform is classically defined, e.g. T ∈ L2
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Functional Analysis

Fourier transform

Properties:

Given a tempered distribution T ∈ S ′

F(F(T )) = T−.

Moreover, it is invertible

F(F(F(F(T )))) = T .

Plancherel, given function f , g ∈ L1
loc∫

Rn

F(f )F(g) dξ =

∫
Rn

fg dx

Therefore,
‖F(f )‖2 = ‖f ‖2
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Functional Analysis

Fourier Transform

Derivatives become multiplication and multiplication becomes
derivatives

F(DαT ) = Cαξ
αF(T ).

and
F(xαT ) = C−1

α DαF(T ).

Theorem

Every spatially homogeneous linear PDE has a distributional solution.
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Functional Analysis

Fourier transform

We can also use this to measure regularity:

Definition

We say that a function f ∈ L1
loc(Rn) belongs to the Sobolev space

H1(Rn), if and only if,

‖f ‖2
H1 =

∫
Rn

(1 + |ξ|2)|F(f )|2 dξ <∞.

By Plancherel’s and property of derivatives, this equivalent to

f ∈ L2(Rn) & ∇f ∈ L2(Rn),

where ∇f stands for the distributional gradient.
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Functional Analysis

Compactness

Sobolev spaces allow to measure regularity in an integral way versus
pointwise bounds for Cα.

They are also a great way to obtain compactness:

Theorem

Given a tight sequence in {fi}i∈N ⊂ L2. If

sup ‖fi‖H1 <∞

then {fi}n∈N admits a strongly convergent subsequence in L2.
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Functional Analysis

Compactness

Proof.

Theorem (Riesz-Kolmogorov)

For 1 ≤ p <∞, a family {fi}i∈I is pre-compact in L2(Rn), iff,

It is Bounded
sup
I
‖fi‖L2 <∞.

It is equi-continuous:

sup
I
‖fi (·+ h)− fi (·)‖L2 → 0.

It is tight: for every ε > 0 there exists a compact set K ⊂ Rn such
that

sup
I

∫
K c

|fi |2 ≤ ε.
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Functional Analysis

Compactness

As we are assuming tightness, we need to show boundedness and
equicontinuity.
Boundedness follows from the following inequality and assumption

sup ‖fi‖L2 ≤ sup ‖fi‖H1 <∞

Checking equicontinuity, we need to look at

‖fi (·+ h)− fi (·)‖2
L2 =

∫ ∣∣∣e−i2πhξ − 1
∣∣∣2 |F(fi )|2 dξ,

where we have used the formula for the Fourier transofom of a transaltion
and Plancherel’s.
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Functional Analysis

Compactness

So we need to show that

lim
h→0

∫ ∣∣∣e−i2πhξ − 1
∣∣∣2 |F(fi )|2 dξ → 0

uniformly in i ∈ N.
We separate the integral into the close field and far field∫ ∣∣∣e−i2πhξ − 1

∣∣∣2 |F(fi )|2 dξ =

∫
|ξ|<L

∣∣∣e−i2πhξ − 1
∣∣∣2 |F(fi )|2 dξ +

∫
|ξ|>L

∣∣∣e−i2πhξ − 1
∣∣∣2 |F(fi )|2 dξ
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Functional Analysis

Compactness

For the first integral we use∣∣∣e−i2πhξ − 1
∣∣∣2 . h2|ξ|2

and for the second integral ∣∣∣e−i2πhξ − 1
∣∣∣2 ≤ 4.

and ∫
|ξ|>L

|F(fi )|2 dξ ≤ 1

L2

∫
|ξ|>L

|ξ|2|F(fi )|2 dξ ≤ 1

L2
≤
‖fi‖2

H1

L2
.
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Functional Analysis

Compactness

Putting all the inequalities together we obtain

‖fi (·+ h)− fi (·)‖2
L2 .

(
L2h2 +

1

L2

)
‖fi‖2

H1 ,

which is enough to show the desired equi-continuity.

Remark: We only need tightness of the Fourier transform to make the
proof work. In particular, we do not need a full derivative in L2 by any
positive α > 0 is enough, i.e. bounded sets of Hα are pre-compact up to
tightness.
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Functional Analysis

Sobolev Spaces

We begin with the general definition:

Definition

A function f ∈ L1
loc(Ω) is sais to be weakly differentiable in the direction

xi , if there exists g ∈ L1
loc(Ω) such that

−
∫

Ω
f ∂1ϕ dx =

∫
Ω
gϕ dx ∀ϕ ∈ D(Ω).

We say that g is the weak derivative of f .

Remark: Weak derivatives coincide with strong derivatives when
f ∈ C 1(Ω).In general, we denote ∇f to be the weak/distributional
gradient of f , even when this is only a distribution.

We can also define higher order weak derivatives.
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Functional Analysis

Sobolev Spaces

Definition

Given and open set Ω, k ∈ N, p ∈ [1,∞] and f ∈ L1
loc(Ω). We say that

f ∈W k,p, if f is k-times weakly differentiable and Dαf ∈ Lp(Ω) for
every |α| ≤ k .And we define the norm

‖f ‖p
W k,p :=

∑
|α|≤k

‖Dαf ‖pLp .
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Functional Analysis

Sobolev spaces

Variants:

We can take the homogeneous space, defined by it’s norm

‖f ‖p◦
W k,p

:=
∑
|α|=k

‖Dαf ‖pLp .

Locally integrable:

‖f ‖p
W k,p

loc

:=
∑
|α|≤k

‖Dαf ‖p
Lploc
.

Similar to L1, it is better if we replace the condition that the weak
derivative is in L1(Ω) by M(Ω)

W 1,1(Ω) ⊂ BV (Ω) = {f ∈ L1 : ∇f ∈M(Ω)}.
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Functional Analysis

Sobolev spaces

Notation: For p = 2, we denote W k,2 = Hk and for Ω = Rn it is
equivalent to the Fourier transform definition.

Theorem

If Ω has a smooth boundary or it is convex, then

‖f ‖W 1,∞ ∼ ‖f ‖Lip.

Remark: Pacman domain example that it doesn’t work in general.
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Functional Analysis

Sobolev Spaces

Remark: For bounded domains Lp(Ω) ⊂ Lq(Ω) if p ≤ q, which implies

W k,p(Ω) ⊂W k,q(Ω).

Remark: We can try to understand how regular functions in W k,p are by
looking at radial singularities:

|x |s ∈W k,p
loc if and only if s > n − k

p
.
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Functional Analysis

Sobolev Spaces

Remark: χB1 does not belong to W 1,p for any p, but belongs to BV .
Similar for any other smooth domain.

Remark: If f , g ∈W 1,p, then max{f , g} ∈W 1,p.Moreover, |f | ∈W 1,p

and

∇|f | =
f

|f |
∇f ∈ Lp.
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Functional Analysis

Sobolev Space

Theorem

For any open set Ω ⊂ Rn, k ∈ N and p ∈ [0,∞], the space W k,p(Ω) is a
Banach space.

If 1 ≤ p <∞ it is separable.

If 1 < p <∞ it reflexible.

If p = 2 it is a Hilbert space.

Proof.

Show that W k,p is a closed subspace of Lp.
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Functional Analysis

Sobolev Space

We can ask ourselves what happens in 1-d.

Theorem

f ∈W 1,p((0, 1)) if only if f is p Absolutely Continuous (A.C.(p)), i.e.
exists g ∈ Lp((0, 1)) such that

|f (t)− f (s)| ≤
∫ s

t
g(u) du.

Remark: W 1,p((0, 1)) ⊂ C 0([0, 1]), note that we can even define it’s
value up to the boundary.
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Functional Analysis

Sobolev Spaces

More classical definition:

Definition

f ∈ C 0((0, 1)) is A.C. (1), if and only if, for every ε > 0 exists δ > 0
such that for every disjoint {(ai , bi )}mi=1 such that

∑
|bi − ai | < δ implies∑

|f (bi )− f (ai )| < ε.
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Functional Analysis

Sobolev Spaces

Higher dimensional Sobolev spaces have similar (weaker) properties

Theorem

Let Ω be open and bounded, and p ∈ [1,∞]. Let f ∈ Lp(Ω), then
f ∈W 1,p(Ω), if and only if, f has a representative such that for each
j ∈ 1, ..., n the function

t → fj(x
′, t) = f (x1, ..., xj−1, t, xj+1, ..., xn)

is A.C. for Ln−1-a.e. for (x1, ..., xj−1, xj+1, ..., xn) ∈ Rn−1, where defined
and

∂t ft ∈ Lp(Ω).

Remark: For example f = x/|x | is C∞(Rn \ {0}).
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Functional Analysis

Sobolev Spaces

We know that smooth functions are dense.

Theorem (Meyers-Serrin ’64)

Let 1 ≤ p <∞, then C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω).

Remark: If Ω is not bounded then C∞ is not contained in W k,p.
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Functional Analysis

Sobolev Spaces

Remark: Pacman domain shows that we can’t approximate with
continuity up to the boundary for general domains.

Theorem

If boundary of Ω is C 1 and 1 ≤ p <∞, then C∞(Ω) ∩W k,p(Ω) is dense
in W k,p(Ω).

Proof.

The idea of the proof is to use a partition of unity to localize (and
flatten) and then use mollification.

The guiding principle for proofs in Sobolev spaces is to prove it for smooth
functions and the extend it by a density argument.
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Functional Analysis

Sobolev Spaces

Functions in Sobolev Spaces can be evaluated in measure zero sets.

Theorem (Trace Theorem)

Let Ω ⊂ Rn be open, bounded and with C 1 boundary. Then there exists
a (unique) bounded linear operator

tr : W 1,p(Ω)→ Lp(∂Ω)

so that
tr(u) = u|∂Ω ∀u ∈ C 0(Ω) ∩W 1,p(Ω).

Notation: We call tr(u) the trace of u onto the boundary.

Remark: The trace operator is not surjective.Example of the Laplace
problem in a Domain.
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Functional Analysis

Sobolev Space

Remark: The trace operator can not be extended in a continuous way to
Lp(Ω).
The lack of a trace in Lp can be seen by the following. Given sets Ω ⊂ Ω̃
and f ∈ Lp(Ω) it can always be extended by zero on Ω̃ \ Ω to get
f̃ ∈ Lp(Ω̃) that coincides with f in Ω. For f ∈W 1,p this is not good
enough!

Theorem (Extension theorem)

Let Ω ⊂ Rn open, bounded and with C 1 boundary. Then for every
p ∈ [1,∞] there exists (not unique) a bounded linear operator:

E : W k,p(Ω)→W k,p(Rn)

so that
Ef |Ω = f
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Functional Analysis

Sobolev Spaces

Sketch of Proof.

Two steps prove the theorem for smooth functions and then extend it by
continuity/density.

For the first part we can use partition of unity to localize and
diffeomorphisms to flatten the boundary locally, reducing ourselves to
half balls.

For trace theorem we need∫
B1∩{xn=0}

|u|p dx ′ ≤ C‖u‖W 1,p(B+
1 ) ∀u ∈ C∞(B+

1 ).
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Functional Analysis

Sobolev Spaces

For extension theorem with k > 1 we need build an extension

E : C∞(B+
1 )→ C∞(B1)

satisfying
‖Eu‖W k,p(B1) ≤ C‖u‖W k,p(B+

1 )

e.g.

Eu(x) =

{
u(x) x ∈ B+

1

4u(x ′,−xn/2)− 3u(x ′,−xn) x /∈ B+
1

or higher order approximations.
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Functional Analysis

Sobolev Spaces

One of the most important subsets of a given Sobolev space is the zero
trace class W k,p

0 :

Theorem

Let Ω be bounded with C 1 boundary. Then f ∈W k,p(Ω) has
tr(f ) = 0 ∈ Lp(Ω), if and only if, f can be approximated by compactly
supported smooth functions C∞c (Ω).

Remark: So we can define W k,p
0 in two different ways.

Remark: For Ω = Rn, W k,p
0 (Rn) = W k,p(Rn).
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Functional Analysis

Sobolev Spaces

Based on the duality of Lp with Lq with dual exponents (1/p + 1/q = 1)
we can characterize the dual of Sobolev spaces W k,p:

Theorem

Let 1 ≤ p <∞. Then L ∈ (W k,p
0 )∗(Ω), if and only if, there exists

{gα}|α|≤k ⊂ Lq(Ω) such that

L(f ) =
∑
α≤k

∫
gαD

αf dx .

Notation:
(W k,p

0 )∗(Ω) = W−k,q(Ω)

and
(H1

0 )∗ = H−1.
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Functional Analysis

Sobolev Spaces

Remark: The equivalence of the theorem is an isometric ishomorphism

‖L‖
(W k,p

0 )∗(Ω)
= inf

gα

∑
α≤k
‖gα‖qq

1/q

.

Matias G. Delgadino | University of Oxford | May 7, 2020 37 / 40



Functional Analysis

Sobolev Spaces

To by pass regularity issues, it is usually good to work with difference
quotients

∂hi f (x) =
f (x + eih)− f (x)

h
& ∇hf = (∂h1 f , ..., ∂

h
n).

We can bound quotients by derivatives

Theorem

Let 1 ≤ p <∞, and Ω′ ⊂⊂ Ω, exists C > 0 such that

‖∇hf ‖Lp(Ω′) ≤ C‖∇f ‖Lp(Ω) ∀f ∈W 1,p, & h ∈ (0, dist(∂Ω,Ω′)).

Proof.

By approximation and density.
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Functional Analysis

Sobolev Spaces

Conversely, we can bound derivatives by quotients:

Theorem

Let 1 < p <∞. Let f ∈ Lploc(Ω) be such that there exists Ω′ ⊂⊂ Ω
satisfying

sup
0<h<ε

‖∇hf ‖Lp(Ω′)∞

then f ∈W 1,p(Ω′) with

‖∇f ‖Lp(Ω′) ≤ sup ‖∇hf ‖Lp(Ω′).

Proof.

Using Banach-Alaoglu compactness and the characterization of weak
derivative. Remark: Not valid for p = 1.
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Functional Analysis

Sobolev Spaces

We can apply this to show H2 regularity to solutions of{
∆u = f ∈ L2(Ω)

u = 0 on ∂Ω.

We can’t test with D2u because it is not a-priori a function, but we can
always test with (∂hi )2uϕ to show

sup
h

∫
|(∂hi )∇u|2ϕ <∞

for any ϕ smooth bump function.
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