Functional Analysis

Matias G. Delgadino

University of Oxford

May 7, 2020

Email: Matias.Delgadino@maths.ox.ac.uk, Office: S2.23

Who is this guy teaching me Functional?

Main field of study: PDEs arising from modelling, in particular Stochastic interacting particle systems and Wasserstein gradient flows. That's why most of the applications will be in PDEs.

Bio:

- 2006-2011 Lic. en Matematica at UNC (Cordoba, Argentina)
- 2011-2016 Ph.D. Applied Mathematics at UMD (Maryland, United States)
- 2016-2017 Postdoc at ICTP (Trieste, Italy)
- 2017-2019 Postdoc at Imperial College (London, England)
- 2019- Proffessor at PUC (Rio de Janeiro, Brazil)
- 2020-2022 Hooke Fellow at Oxford (Oxford, England)

Outline for the course

- Differential Calculus and L^p spaces.
- Distributions.
- Sobolev Spaces.
- Embedding Theorems.

Foundations functional analysis and distributions

- Linear Functional Analysis by Rynne, Bryan, Youngson, M.A.
- Functional analysis by Walter Rudin

Sobolev Spaces

- Measure Theory and Fine Properties of Functions, by L.C. Evans and R.F. Gariepy.
- Functional Analysis, Sobolev Spaces and Partial Differential Equations, by Haim Brezis
- Sobolev Spaces, by R.A. Adams and J.J.F. Fournier.
- The Analysis of Partial Differential Operators I, by L. Hörmander.

Functional Analysis: When Analysis/(point set) Topology meets Linear Algebra. The study of the Topology of infinite dimensional of (mostly linear) spaces.

Given a set U (e.g. $U \subset \mathbb{R}^n$), the set of scalar functions $F(U) = \{f : f : U \to \mathbb{R}\}$ has a clear vector space structure.

That is to say:

If
$$f, g \in F(U)$$
, then $f + g \in F(U)$, where $(f + g)(x) = f(x) + g(x)$.

If $f \in F(U)$ and $c \in \mathbb{R}$, then $(cf) \in F(U)$, where (cf)(x) = cf(x).

Definition

A subspace $X \subset F(U)$ endowed with topology τ , is a Topological Vector Space. If the operations addition and multiplication by a scalar are continuous in the topology τ .

More specifically, we consider summing two functions as an application $sum : F(U) \times F(U) \rightarrow F(U)$. Then, the definition is asking that *sum* is continuous when we endow $F(U) \times F(U)$ with the product topology $\tau \times \tau$.

i.e. whenever we have sequence $\{f_n\}_{n\in\mathbb{N}}$, $\{g_n\}_{n\in\mathbb{N}}\subset X$, such that

$$f_n \to^{\tau} f$$
 & $g_n \to^{\tau} g$,

then

$$f_n+g_n\to^{\tau}f+g.$$

The most studied types of vector spaces:

- Metrizable/Metric: There exists a metric/distance d_τ(·, ·) : X × X → [0, ∞), satisfying the triangle inequality that induces the topology τ.
- Normed: There exists a norm || · ||_τ : X → [0,∞) that induces the metric/distance d_τ(f,g) = ||f g||_τ that induces the topology τ.
- Inner Product: There exists an inner product $\langle \cdot, \cdot \rangle_{\tau} : X \times X \to \mathbb{R}$ that induces a norm $\langle f, f \rangle_{\tau}^{1/2} = ||f||_{\tau}$ that induces a metric, that induces the topology τ .

Examples: Take $U = \mathbb{R}^n$ or any other measure space with underlying measure μ , we have

$$L^p(U) = \{f \in F(U) \cap \mathcal{M}(U) : \int_U |f(x)|^p d\mu(x) < \infty\}.$$

For $p \ge 1$, L^p is a **Normed** vector space.

- For p = 2, L^2 is an **Inner-Product** space.
- For $0 , <math>L^p$ is a **Metric** vector space with distance

$$d_p(f,g) = \int_U |f-g|^p \ d\mu.$$

Definition

A **metric** space X is said to be **complete** if every Cauchy sequence admits a limit.

Reminder: $\{f_n\}_{n\in\mathbb{N}}$ is Cauchy, if for every $\epsilon > 0$ exists $N(\epsilon) \in \mathbb{N}$ such that if $n, m \ge N(\epsilon)$, then

 $d(f_n, f_m) < \epsilon.$

By the definition there exists a unique $f_{\infty} \in X$, such that

 $\lim_{n\to\infty}d(f_n,f_\infty)=0.$

Completeness is such an important property that spaces change their name.

- Complete metric spaces are called Frechet Spaces (or F-Spaces depending if the balls can be taken to be convex).
- Complete normed spaces are called **Banach** Spaces.
- Complete inner product spaces are called **Hilbert** Spaces.

Hilbert spaces are the most similar to finite dimensional vector spaces. They admit an infinite complete Orthonormal basis $\{e_i\}_{i \in I}$ such that

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{i,j} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

and simplifies the proofs greatly.

Warning: The set of indexes *I* is not necessarily countable!

Definition

A topological space X is said to be **separable** if there exists a countable set of points $\{f_n\} \subset X$ which is dense in X.

Theorem

If X is a **separable Hilbert** space, then it admits a countable orthonormal basis.

Corollary

If X is a separable Hilbert space, then it is homeomorphic to $L^2([0,1])$.

One of the main difference between finite dimensions and infinite dimensions is the compactness.

Theorem (Heine-Borel)

Any bounded sequence, admits a convergent subsequence. Alternatively, every closed bounded set is compact.

Corollary

In \mathbb{R}^n all norms induce the same topology.

Infinite dimensional separable **Hilbert** spaces do not satisfy the **Heine-Borel** property. Take $\{e_n\}_{n \in \mathbb{N}}$, the orthonormal basis then

$$\|e_i - e_j\|^2 = \langle e_i - e_j, e_i - e_j \rangle = 2(1 - \langle e_i, e_j \rangle) = 2\delta_{i,j}$$

For $L^2([0,1])$ this is like taking the Fourier basis

$$e_n = \sin(2\pi nx) \rightharpoonup 0$$

This is known as the Riemann-Lebesgue Lemma.

Differential Calculus

Given two **normed** vector spaces X, Y we can consider $\Omega \subset X$ open, an application

 $F: \Omega \subset X \to Y$

and the set of continuous linear mappings

 $\mathcal{L}(X, Y) = \{L : X \to Y : L \text{ is linear and continuous}\}.$

Theorem

If X and Y are normed spaces then $\mathcal{L}(X, Y)$ is normed space.

If $Y = \mathbb{R}$ with the usual topology, then we denote $\mathcal{L}(X, R) = X^*$.

Differential Calculus

Definition

A mapping $F : \Omega \to Y$ is said to be (Frechet) differentiable at $x_0 \in \Omega$ if exists $L \in \mathcal{L}(X, Y)$ such that

$$F(x) = F(x_0) + L(x - x_0) + o(|x - x_0|).$$

Remark: *L* is unique and we denote $DF(x_0) = dF(x_0) = L$.

Remark: If *F* is differentiable at $x_0 \in \Omega$, then we say that it is differentiable in Ω .

If F is differentiable in Ω we can consider the mapping $DF : \Omega \subset X \to \mathcal{L}(X, Y)$ and ask if it is Frechet Differentiable. If it is differentiable and it's differential is continuous then we say that $F \in C^2(\Omega; Y)$, and

$$D^2F \in \mathcal{L}(X^2, Y).$$

The idea is to lose fear and realize that most of the properties that you know for differentiable vector valued functions $F : \mathbb{R}^n \to \mathbb{R}^m$ are still valid in this case.

Differential Calculus

For instance,

Theorem (Fundamental Theorem of Calculus) If $F : (a, b) \subset \mathbb{R} \to Y$ is C^1 and Y is a Banach space, then $F(t) = F(s) + \int_s^t dg(u) du$,

where we define the integral via Riemman sums.

Remark: Mean Value theorem doesn't hold, but MV Inequality does.

Differential Calculus

A vector valued function is C^1 , if and only if, it has continuous partial derivatives.

Theorem

Let $D \subset S_X = \{x : ||x|| = 1\}$, such that cl(Span(D)) = X, then $F \in C^1$ if and only if

- F is continuous.
- For every $x \in \Omega$ $F(x + \cdot d) : \mathbb{R} \to \mathbb{R}$ is differentiable.
- There exists $g:\Omega \to \mathcal{L}(X,Y)$ continuous such that

$$\frac{d}{dt}F(x+td)=g(x+td)(d)\in Y.$$

In this case dF = g.

L^p spaces

Given a measure space $(\Omega, \mathcal{F}, \mu)$ we can define

$$L^p(\Omega; d\mu) = \left\{ f: \Omega o \mathbb{R} ext{ measurable } : \ \int_\Omega |f|^p \ d\mu < \infty
ight\}.$$

Reminder: Measurable $f^{-1}((a, b)) \in \mathcal{F}$ for all a, b. They are defined almost everywhere (a.e.), with respect to the measure

$$f\sim g$$
 if and only if $\mu(\{f
eq g\})=0.$

For instance we say $f \in L^p$ is continuous if there exists a continuous representative.

Typical case $\Omega \subset \mathbb{R}^n$ and μ is the Lebesgue measure.

L^p spaces

 L^p endowed with the norm

$$\|f\|_{p} = \left(\int_{\Omega} |f|^{p} d\mu\right)^{1/p}$$

is a complete normed vector space. L^{p} is a Banach space!

- For $1 \le p < \infty$ it is separable. Ex: $L^{\infty}((0,1))$ is not separable.
- For $1 \leq p < \infty$, the dual of L^p is $(L^p)^* = L^q$, where

$$\frac{1}{p} + \frac{1}{q} = 1.$$

• For $1 <math>L^p$ is reflexive

$$(L^p)^{**}=L^p.$$

Usefuel Inequalities:

• Hölder inequality or duality pairing for $X = L^p(\Omega; d\mu)$

$$\left|\int_{\Omega} fg \ d\mu\right| = |\langle f, g \rangle_{X, X^*}| \le \|f\|_X \|g\|_{X^*} = \|f\|_{L^p} \|g\|_{L^q},$$

if 1/p + 1/q = 1A useful variation

 $\|fg\|_{L^r} \le \|f\|_{L^p} \|g\|_{L^q},$

if 1/p + 1/q = 1/r.

Minkowski's or triangle inequality for the norm

$$||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$$

Interpolation

$$\|f\|_{L^r} = \|f\|_{L^p}^\lambda \|f\|_{L^q}^{1-\lambda}$$
 $rac{\lambda}{p} + rac{1-\lambda}{q} = rac{1}{r}.$

if

Young's inequality for the convolution

$$\|f * g\|_{L^{r}} \leq \|f\|_{L^{p}} \|g\|_{L^{q}}$$

if

$$\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}.$$

From now on $\Omega \subset \mathbb{R}^n$ open. We consider the test functions

 $\mathcal{C}^{\infty}_{c}(\Omega) = \{ \varphi \in \mathcal{C}^{\infty}_{c} \ : \ supp \varphi = \{ x \in \Omega \ : \ \varphi(x) \neq 0 \} \text{ is compact} \}.$

When endowed with a specific topology they are denoted by

 $\mathcal{D}(\Omega).$

The basic building block is

$$arphi(x) = egin{cases} e^{-rac{1}{1-|x|^2}} & |x| < 1 \ 0 & |x| \ge 1. \end{cases}$$

We can show existence of partitions of unity

Lemma

Given an open covering $\{U_i\}_{i \in I}$ there exists positive functions $\varphi_i \in C_c^{\infty}(U_i)$ such that

$$\sum_{i\in I}\varphi_i(x)=1\qquad\forall x\in\Omega,$$

such that only a finite number of them are non-zero.

We can show existence of cut-off functions with estimates

Lemma For any V compact subset Ω , there exists $\chi_V \in C_c^{\infty}(\Omega)$, such that $\chi_V(x) = 1$ for all $x \in V$ and $|D^{\alpha}(\chi_V)(x)| \leq C_{\alpha}d(x,\partial\Omega)^{-|\alpha|}.$

To mollify a function we need to take a $\varphi \in C^\infty_c(B_1)$ which is positive and

$$\int_{B_1} \varphi = 1.$$

We denote by

$$\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(\frac{x}{\varepsilon}).$$

A mollification of a function $f \in L^p$ is given by

$$f^{\varepsilon}(x) = f * \varphi_{\varepsilon}(x) = \int_{\mathbb{R}^n} f(y) \varphi_{\varepsilon}(x-y) \, dy,$$

where we have extended f by zero outside of Ω .

Properties:

• $f^{\varepsilon} \in C^{\infty}$ and

$$D^{\alpha}f^{\varepsilon}=\left(D^{\alpha}\varphi_{\varepsilon}\right)*f.$$

By Young's

$$\|f^{\varepsilon}\|_{L^{p}} \leq \|f\|_{L^{p}}\|\varphi_{\varepsilon}\|_{L^{1}} = \|f\|_{L^{p}}.$$

• It approximates f in L^p :

$$\|f^{\varepsilon}-f\|_{L^{p}} \to 0$$

• $suppf^{\varepsilon} \subset (suppf) + B_{\varepsilon}$. Then C_{c}^{∞} dense in L^{p} .

Convergence Theorems

Theorem (Fatou's Lemma)

If $f_n \rightarrow f$ a.e and $f_n \ge 0$, then

$$\liminf \int f_n \ge \int \liminf f_n = \int f.$$

Theorem (Monotone Convergence)

If $f_n \to f$ a.e. is monotone increasing i.e. $f_n(x) \le f_{n+1}(x)$ for every x and n, then

$$\lim_{n} \int f_{n} = \sup_{n} \int f_{n} = \int \sup_{n} f_{n} = \int f.$$

Convergence Theorems

Theorem (Lebesgue Dominated Convergence) If $f_n \to f$ a.e. and exists $g \in L^1$ such that $|f_n|(x) \le g(x)$ for every n and x then $\lim \int f_n = \int \lim f_n = \int f.$

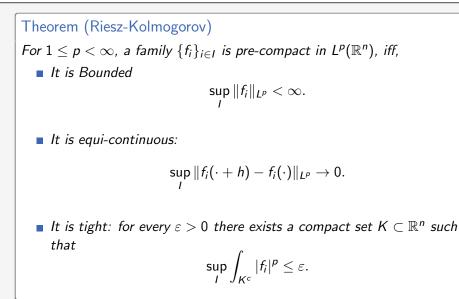
Convergence Theorems

Theorem (Vitali's Convergence theorem) Given Ω a set of finite measure $|\Omega| < \infty$, then $f_n \to f$ in L^p , i.e. $||f_n - f||_{L^p} \to 0$, if and only if, $f_n \to f$ in measure, i.e. for every $\varepsilon > 0$ $|\{x : |f_n(x) - f(x)| > \varepsilon\}| \to 0$.

The family {f_n} is equintegrable. i.e. for every ε > 0 exists a δ such that for every measurable set A satisfying |A| < δ implies

$$\int_A |f_n|^p \leq \varepsilon.$$

Convergence/Compactness



Convergence/Compactness

This should be reminiscent of compactness for continuous functions:

Theorem (Arzela-Ascoli)

A family of continuous functions $\{f_i\}_{i \in I}$ from a compact set K is pre-compact, iff,

They are uniformly bounded

$$\sup_{I} \|f_i\|_{\infty} < \infty$$

They have a uniform modulus of continuity. i.e. there exists $\omega : [0, \infty) \rightarrow [0, \infty)$ such that ω is increasing and

$$\sup_{x,y,l} d(f_i(x), f_i(y)) \leq \omega(d(x, y)).$$

The main point is that there is three necessary and sufficient conditions for convergence:

- **Boundedness** in the appropriate norm.
- Uniform **Regularity** measured in the appropriate norm.
- **Tightness**, you need be careful things are not escaping to infinity.

Given a space X, the weak topology is the smallest/coarsest topology that makes every element of X^* continuous.i.e.

$$f_n
ightarrow f$$
 iff $\langle f_n, T \rangle_{X,X^*} \to \langle f, T \rangle_{X,X^*}$ $\forall T \in X^*$

Given X^* , the weak-* topology is the smallest/coarsets topology that makes the elements of $X \subset X^{**}$ continuous.i.e.

$$T_n \rightharpoonup^* T$$
 iff $\langle f, T_n \rangle_{X,X^*} \to \langle f, T \rangle_{X,X^*}$ $\forall f \in X$.

Weak vs Weak-* Convergnce

Theorem (Banach-Alaoglu)

If X is separable, then bounded sets of X^* are compact with the weak-* topology.

Remark: When $X = X^{**}$ is reflexive, then the weak topology is equal to weak-* on X^* .

Corollary

For 1 bounded sets are weakly compact.

Corollary

For $p \in L^{\infty}$ bounded sets are weak-* compact.

Bounded sets in L^1 are not compact!

Matias G. Delgadino | University of Oxford | May 7, 2020

Strong vs Weak convergence

There a few ways weakly convergent sequences can fail to converge strongly:

Concentration:

$$f_n(x) = n^{p/n} f(nx)$$

Oscillation:

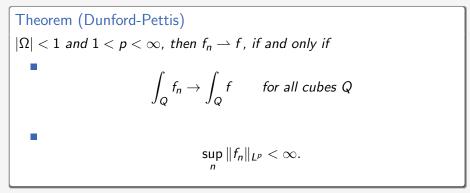
$$f_n(x) = \sin(nx)f(x).$$

Not tight:

$$f_n(x) = \frac{1}{n^{1/p}}\chi_{(-n,n)}$$

Weak convergence

Weak or Weak-* convergence can be characterized by any dense subset of the space X or X^* .



Remark: For $p = \infty$, replace weak by weak-*. For p = 1, we need equiintegrability.

What happens to L^1 ?

 $L^1(\Omega) \subset \mathcal{M}(\Omega),$

where $\mathcal{M}(\Omega)$ is the set of signed bounded Radon measures.

 $\mu \in \mathcal{M}(\Omega) \quad \text{ iff } \quad \mu = \mu_+ - \mu_- \quad \mu_+, \mu_- \in \mathcal{M}_+(\Omega),$

where $\mathcal{M}_+(\Omega)$ is the set of bounded Radon measures. Given $f \in L^1(\Omega)$, we can consider

$$\mu_f = f d\mathcal{L}$$
 i.e. $\mu_f(A) = \int_A f d\mathcal{L}$.

What happens to L^1

Theorem (Riesz-Representation Theorem)

The dual of continuous functions with compact support is locally finite measures:

$$\mathcal{M}_{loc}(\Omega) = (C_c(\Omega))^*.$$

i.e. for every $T \in (C_c(\Omega))^*$ there exists a unique $\mu \in \mathcal{M}_{loc}(\Omega)$ such that

$$\langle f, T \rangle_{C_c(\Omega), (C_c(\Omega))^*} = \int_{suppf} f d\mu = \int_{suppf} f d\mu_+ - \int_{suppf} f d\mu_-.$$

Small caveat with the topology of $C_c(\Omega)$, $f_n \to f$ if $||f_n - f||_{\infty} \to 0$ and support of $\bigcup_n suppf_n$ is compact. More, next class.

What happens to L^1

Corollary

As C_c or C_b are separable, then bounded sets of \mathcal{M} or \mathcal{M}_{loc} are weak-* compact.

Finally, consider $\{f_n\} \subset L^1$ such that $\sup_n ||f_n||_{L^1} < \infty$, then, up to subsequence, there exists $\mu \in \mathcal{M}(\Omega)$ such that

$$\int \varphi f_n \to \int \varphi d\mu$$

for every $\varphi \in C_{b}.\mu$ is not necessarily in L^{1} .