
1 Diffusion Models
Diffusion models [SDWMG15, HJA20] have become the most successful way in recent past to sample
from a given distribution. One of the most notable implementations is DALL·E from Open AI,
which generates images based on a prompt. In mathematical terms, the problem is to sample from
an underlying distribution from which we only have samples. Our starting point is a given dataset

{Xi}N
i=1 which are independent samples from an underlying distribution ρ∗ ∈ P(RL). (DATA)

We should note that practitioner consider the distribution to be an encoded version of the actual
data set whose ambient dimension is much larger K ≫ L and hence more complicated to manage.
See section 1.3 for details on encoding and the underlying manifold hypothesis.

As a basis we take the standard normal distribution µ = N (0, 1) ∈ P(RL). Our objective is to
find a smooth an easy to evaluate generator function G : RL → RL, such that d(G#µ, ρ∗) is small
for some meaningful metric d. A standard choice for the metric is to fix the discussion is the 2-
Wasserstein distance, which is better suited than relative entropy for distributions whose support
are lower dimensional, see the discussion in [ACB17] and section 1.3. Stable Diffusions constructs
the mapping G, by inverting the Ornstein-Ulhembeck (OU) flow from ρ∗ → µ. Namely, independent
of the initial data ρ∗ we know that the solution ρ : [0, ∞) × RL → RL of linear parabolic equation∂tρ = ∆ρ + ∇(xρ) (0, ∞) × RL

ρ0 = ρ∗
(OU)

satisfies that for most metrics the flow converges exponentially. For example, χ2, relative entropy
and 2-Wasserstein distance d2

2(ρt, µ) ≲ e−t. This convergence can be refined if the mean and the
variance of ρ∗ match those of µ, then we have the convergences improves to e−3t. In lines with
the dynamic interpretation of the 2-Wasserstein distance of Benamou-Brenier [BB00], the equation
(OU) can be interpreted as a continuity equation. Namely, we can consider ρt to be the solution of∂tρ + ∇ · (V ρ) = 0 (t, x) ∈ (0, ∞) × RL

ρ0 = ρ∗ x ∈ RL,
(Cont)

where the velocity field V : (0, ∞) ×RL → RL is given by V = −∇ log ρ − x. This equation can be
solved by characteristics.

d
dtXt(x) = −∇ log ρt(Xt(x)) − Xt(x) t ∈ (0, ∞)
X0(x) = x.

(ODE)

Namely, we have that the solution to (OU) is given by ρt = Xt#ρ∗. We should note that we need to
know log ρt is smooth for (ODE) to make strict sense. This is directly related to the smoothness of
ρ∗ as well as a bound from below. See (Tweedies), for the inversion of the (SDE) versus the (ODE),
which allows for lower regularity. See also the discussion before the objective, about well-posedness.
The inversion of the flow is then given by inverting the characteristic flow in time (ODE). Namely,



picking a time horizon T ∈ (0, ∞), we consider
d
dtZ

T
t (z) = −∇ log ρt(ZT

t (z)) − ZT
t (z) t ∈ (0, T )

ZT
T (z) = z,

(ODE−1)

which is equipped with a boundary condition at the end point. Using that d(ρT , µ) ≲ e−T , which
is small for T large enough, we can consider sampling the terminal condition from the Gaussian
z ∼ µ. In particular, this is equivalent to considering the continuity equation (Cont) with boundary
condition at t = T : ∂tν

T + ∇ · (V νT ) = 0 (t, z) ∈ (0, T ) × RL

νT
T = µ z ∈ RL.

(Cont−1)

Hence, an approximation of the original measure is given by the following mapping ρ∗ ∼ νT
0 =

ZT
0 #µ. In particular, the generator function would be given by G = ZT

0 . Namely, if Z is a sample
from µ, then a sample of ρ∗ can be approximated by integrating (ODE−1) numerically. Hence,
in this way the problem of sampling has been transformed into a supervised learning problem in
which we are interested in finding an approximation of the score function

log ρt. (Score Function)

Similarly, we can try to invert the (SDE) associated to (OU). The mathematical foundation for
the inversion of the SDE is given in [And82]. In a nutshell, Brownian motion can be inverted path
by path, if we have access to (Score Function). Here, we show how we can recover the backward
process, using Bayes’ Theorem. To be clear, we consider an Stochastic Particle associated to the
(OU) process

dX = −X +
√

2dB. (SDE)

If we try to infer the past given the future, we obtain Tweedies’ formula which accounts for the
likelihood of the path of the particle. For s < t, applying Bayes’ theorem, we get

E[es−tXs|Xt = y] =
∫
RL

e(s−t)xP (Xs = x|Xt = y) dx

= y +
∫
RL

(es−tx − y)P (Xs = x|Xt = y) dx

= y + 1
P (Xt = y)

∫
RL

(e(t−s)x − y)P (Xt = y|Xs = x)P (Xs = x) dx

= y − (1 − e−2(t−s))∇ log ρt(y),
(Tweedies)

where in the last step we notice that the expression coincides with the logarithm of the (Score Function),
up to a multiplicative constant. Similarly, evaluating at a general smooth function ϕ, we can dif-
ferentiate (Tweedies) to obtain

− d

ds
E[ϕ(Xs)|Xt = y]

∣∣∣∣
s=t−

= ∇ϕ(y)y + 2∇ϕ(y)∇ log ρt(y) + ∆ϕ(y) =: Lρtϕ(y). (1)

The operator Lρt is the generator of a unique stochastic process moving backwards in time:dẐT
t = −ẐT

t − 2∇ log ρt(ẐT
t ) +

√
2dBt

ẐT
T (z) = z

(SDE−1)



Similar to (Cont−1), we can furnish the standard normal µ as the boundary conditions at t = T to
obtain the Fokker-Planck equation∂tν̂t − ∇ · ((z + 2∇ log ρt)ν̂t) = −∆ν̂

ν̂T
T = µ.

(OU−1)

We should note (OU−1) is well posed, even if there is a negative ∆ν̂ in the right hand, as we
are flowing backwards in time. Again having access to the score function, numerically integrating
(SDE−1) we have a another approximation of the original measure ρ∗ ∼ ν̂T

0 = ẐT
0 #µ.

We should note that for the stochastic case (SDE−1), there are some references already in the
literature analyzing this situation [CCL+23, DB23b, DB23a, LLT23, CDS23, LWCC23, WHT23],
mostly with the restrictive assumption that the density of the distribution ρ∗ is Lipschitz. Only
[CDS23] reduces the hypothesis to finite Fisher relative information, for the stochastic case (OU−1).
None of them actually cover the relevant case of what happens when the underlying measure is
not absolutely continuous, or understand what is the output of the algorithm in this case. In fact,
this is the case where the algorithm is being implemented, see section 1.3. A first objective, is to
understand an implicit biases that the algorithm might be introducing in the low regularity setting.

Objective 1:. Estimate quantitatively the distance d(ρ∗, νT
0 ) and d(ρ∗, ν̂T

0 ), studying particularly
the sensitivity to approximations of the Score Function. The main objective is to obtain results in
the 2-Wasserstein distance, that are independent of the regularity of ρ∗.

Here is where I want to leverage my experience dealing with low regularity objects in Geometric
Measure Theory [DMMN18, DM19, DW24] as well as Wasserstein gradient flow related problems
[DYY22, CDD+19, CDFL22, CDM16] for measure valued evolutions. See section 1, for a glimpse
into the regularization procedure the algorithm introduces to empirical measures. Moreover, my
experience with the related Wasserstein Generative Adversarial Networks algorithm [DSC24], allows
me to compare with a classical benchmark in the literature. From the mathematical perspective
the most general conditions to have well posedness of transport equation (Cont−1) are the ones
associated to the Di Perna-Lions theory of renormalized solutions [DL89], which was then extended
by Ambrosio [Amb04] to include BV vector fields with bounded divergence. For the Fokker-Planck
equation (OU−1), the most general is to require the vector fields to have bounded divergence, and
belong to L2 in space and time, see Le Bris and Lions [BL08]. We should note, that we if don’t
assume regularity in the initial distribution, the score function will never satisfy the conditions in
[Amb04] or [BL08]. With respect to my own work, in terms of making sense of vector fields with
negative regularity in critical spaces and non-local diffusion, see [DS18].

Relationship with the JKO scheme. Discretizing (ODE−1), and applying Forward Euler we
obtain the mapping (I − ∆t(x + ∇ log ρ)), appears naturally in the approximation of the (OU)
by JKO algorithm, which was was originally proposed in the seminal paper [JKO98]. Namely,
we can approximate the (OU) equation, considering ρn+1 = arg minρ

d2
2(ρn,ρ)

2 + ∆tH(ρ|µ) where

H(ρ|µ) =


∫
RK

dρ
dµ log dρ

dµ dµ ρ ≪ µ

+∞ otherwise
is the relative entropy with respect to the Gaussian. The



sufficient condition to be the minimizer in JKO step is given by (I−∆t(x+∇ log ρn+1))#ρn+1 = ρn,

just like backward Euler for ODE’s, this is a implicit characterization. Using convexity, we know
that this mapping is almost contractive in the d2 distance, see [AGS08, Section 10.1.1].

Empirical measures Although a usual hypothesis is that the data points {Xi}N
i=1 are being

sampled from an underlying distribution ρ∗, this distribution will never be smooth. Hence, it
is enlightening to consider the case that the data distribution is exactly an empirical measure
ρ∗ = 1

N

∑N
i=1 δxi .

ρproxy = (I − ∆t∇ log ρ∆t)#e∆t(−∆)ρ∗. (proxy)

For a given y ∼ ρ∆t, we map it to the function X∆t(y) which is a weighted average of Xi by the
exponential of the distance to y:

X∆t(y) =
N∑

i=1
Xiν

i
∆t(y) with νi

∆t(y) = e− |y−Xi|2
2∆t∑N

j=1 e−
|y−Xj |2

2∆t

.

Applying Laplace’s principle we readily obtain that

X∆t(y) →∆t→0 arg min
Xi

|y − Xi|.

Figure 1: From left to right, the samples Xr, y and X∆t(y), for the datasets MNIST and Cats and
Dogs dataset, where we tookout the bases image Xr to obtain a more diverse sample.

Objective 2:. Understand the regularization process of empirical measures, in 1-step of the dif-
fusion model algorithm. Check under which topology this regularization is continuous. Clarify if
there are any hidden biases introduced by the regularization.

1.1 Control for sub-riemmanian manifolds

Sub-Riemannian Manifolds. We consider M a smooth Riemannian manifold, with TM its
usual vector bundle. Due to inherent constraints of the modeled control system, we consider that
for a given p ∈ M , we can only actuate in subspace Dp ⊂ TMp of all possible tangent directions.
More formally, we consider that the distribution D is a subbundle of TM .

Control Systems on Sub-Riemannian Manifolds. We consider the simplest system of control
on a sub-Riemannian manifold given by a driftless system. That is to say, that the system is
described by the following differential equations:



ṗ =
m∑

i=1
uiXi(p), (driftless system)

where p ∈ M is the state of the system (a point on the manifold), X1, . . . , Xm are the vector fields
that span the distribution D at each point of the manifold (i.e. span{X1(p), ..., Xm(p)} = Dp), and
u1, . . . , um ∈ R are the control inputs (scalar controls applied to the vector fields X1, . . . , Xm). The
trajectory of the system is constrained to move within the subspace defined by D, meaning that it
is restricted to a set of accessible directions at each point.

Example: Dynamics of the Car-like Robot. We consider the simplest relatable system of try-
ing to park a car. The state p = (x, y, θ, φ), represents the the position (x, y) ∈ R2, the orientation
of the car θ ∈ R and the steering φ ∈ (−π/4, π/4) which is bounded to avoid destabilization. The
deterministic dynamics of the car-like robot are:

ẋ = u1 cos θ, ẏ = u1 sin θ, θ̇ = u1
L

tan φ, φ̇ = u2,

where L is the wheelbase of the car, u1 determines the forward velocity, and u2 the rate of steering.

Controllability. The Chow-Rashevskii theorem is a key result in sub-Riemannian geometry. The
theorem states that if the Lie algebra generated by the control vector fields X1, . . . , Xm spans the
tangent space TpM at each point p ∈ M , then the system is controllable, see [CR39, Ras40, Sus95].

In other words, if

span{X1(p), X2(p), . . . , Xm(p)} = TpM for all p ∈ M, (Lie Algebra)

then for any pair of points p0, p1 ∈ M , there exists a control input u(t) such that the trajectory of
(driftless system) starting from p0 reaches p1. In terms of the Car-like robot, the everyday example
is to parallel park.

For the PDE community, the condition (Lie Algebra) is usually associated to Hörmander’s hypoel-
lipticity [Hör67, Hör71], on the regularization properties of the associated hypo-elliptic operator

∆D =
m∑

i=1
X2

i + (∇ω · Xi)Xi, (2)

where ∇ω· is the divergence associated to the intrinsic volume form ω. For a newer account of
Hörmander’s theorem using Maliavan calculus, see [Hai11]. For an introduction to heat equation
associated to (2), see [ABB19a, Chapter 21].

Finding a control using Stable Diffusion. Although the Chow-Rashevskii theorem shows the
existence of a control, finding that control is not necessarily an easy task [AS92, Jea14, ABB19b].
A way of constructing such control can be informed by Stable diffusions, see [EGP24, GHS24].

To illustrate this point we use the Car-like robot example, and we look to find a control that drives
the vehicle from point p0 to point p1. We consider the time evolution of replacing the controls u1

and u2 with derivatives of Brownian motion dW1 and dW2, staring from the desired target location
p1. That is to say we consider the evolution of SDE for some time horizon [0, T ]:

dx = cos θ dW1, dy = sin θ dW1, dθ = 1
L

tan φ dW1, dφ = dW2,



where W2 is reflected through the boundary of [−π/4, π/4], see [FKDB+24] for the stable diffusion
algorithm in a bounded domain. To invert time, we first re-write this SDE in the more familiar
form dz = σ(z)dW

z0 = p1
, with σ(z) =


cos θ 0
sin θ 0

1
L tan φ 0

0 1

 . (3)

Up to adding boundaries for (x, y) and periodicing the orientation θ, we know that that as t → ∞
the ρt = Law(zt) converges to the volume element in M . Following the guiding principle of Stable
Diffusions, we consider a time horizon T ∈ (0, ∞) and apply the results in Anderson [And82], to
consider inversion of the SDE (3):dq = −σ(q)

(
σt(q)∇ log ρ(q) + dW̃

)
qT = p0,

(4)

where W̃ is a standard Brownian motion moving backward in time. To be able to invert the
system, [And82] requires that the law is smooth, which is assured by Hörmander theorem using the
condition on the (Lie Algebra). Hence, if want to find a control that brings the point p0 to the point
p1: We flow the SDE (3) forward in time, and record ∇ log ρt the gradient of the (Score Function),
and we can create a time dependent feedback control, which has the form(

u1(t)
u2(t)

)
= σt(q)∇ log ρT −t(q) + dW̃ . (5)

With probability 1 with repect to the Brownian Motion, the stochastic controller (5) will drive the
particle from p0 to p1.

Objectives. One of the first questions we are interested in is safety of this controller. Namely, can
small perturbations of the gradient of the (Score Function) create undesirable behavior? This con-
struction also raises the question of how is this controller (5) related to an optimal controller, which
gives rise to the geodesic in the sub-Riemmanian structure. A possibility to recover a deterministic
control is to consider the small noise regime, by introducing a small parameter ε → 0+ and taking
it to zero. This is akin to recovering the Wasserstein distance from the Schrödinger bridge problem,
see [Léo13] or more generally [GT20]. In applied math, this connection is usually known through
Sinkhorn’s algorithm which uses an entropic regularization to recover the Wasserstein distance as
ε → 0+, see [PC+19].

Objective 3:. Similar to standard stable diffusion, see objective 1, study the sensitivity of the
controller (5) with respect to the score function and the initial and final points, p0 and p1. Use
the insights from the convergence of Schrödinger bridges to Wasserstein geodesics [GT20], to show
that as ε → 0+ the measure over paths of trajectories which is induced by the stochastic controller
(5) has a Laplace principle with respect to the geodesic in the sub-Riemannian structure. Namely,
almost surely as ε → 0+ the trajectory controlled trajectory converges to the geodesic.



1.2 Conditional Sampling implementation

Another main advantage of diffusion models is their flexibility to sample from conditional distribu-
tions. More specifically, we consider a possibly stochastic observation operator A : RL → Rm with
m ≤ L. We want to sample from the conditional distribution of having a given observation

y = A(x0) ∈ Rm.

Using Bayes’ theorem, we have that we can decouple the gradient of the associated score function

∇ log ρt(x|y) = ∇ log ρt(y|x) + ∇ log ρt(x).

So we can invert the (OU) flow associated to ρt(x|y), if we have access to ρt(y|x). This can be
done using extra training, by creating a new dataset that tracks the evolution of the observation
operator through (OU), see [SSDK+21, Appendix I]. Although this is theoretically possible, any
particular problem requires to generate a new tailored dataset, and more computing time for extra
training. Instead, a popular, and comparatively much easier alternative, is to use Diffusion Pos-
terior Sampling (DPS), which was proposed in [CKM+23]. We start by re-writing the conditional
probability over all possible initial conditions of the diffusion process

P (y|Xt) = EX0∼P (X0|Xt)[P (y|X0, Xt)] = EX0∼P (X0|Xt)[P (y|X0)].

The next step is to approximate this expectation by using (Tweedies) formula

X̂0(Xt) = EX0∼P (X0|Xt)[X0] = et
(
Xt − (1 − e−2t)∇ log ρt(Xt)

)
.

We approximate the conditional probability by

P (y|Xt) = EX0∼P (X0|Xt)[P (y|X0, Xt)] ∼ P (y|EX0∼P (X0|Xt)[X0]) = P (y|X̂0(Xt)).

This expression can then be differentiated in terms of Xt as the expression for X̂0(·) and the
observation mapping A(·) are considered to be known explicitly. Although this approximation
gives a really fast and easy implementation, little is known about what is the inherent bias of such
an approximation to the sampling.

Objective 4:. Understand what is the exact measure the DPS algorithm is actually sampling from,
even under regularity assumptions. Compare and contrast with new alternatives of sampling, that
consider higher order approximations of the posterior sampling [RCK+24].

The discussion above purposely ignores the encoding decoding steps associated to Latent Diffusion
Models, see section 1.3. This introduces another layer of difficulty, as the decoding from latent
space to pixel space is one-to-many, see [CCS+23] for an algorithm that considers this more in
depth.

1.3 The Manifold Hypothesis: Latent Diffusion Models



X DATA

E Encoder

Z
Latent

Representation

D Decoder

X̂ Reconstructed
DATA

Examples of datasets like (DATA) are high resolution images or
audio clips. In practice, not every possible configuration of pix-
els forms a realistic image. Instead, meaningful images, like those
of faces or landscapes, lie on some lower dimensional "manifold"
that captures the patterns and structures inherent to real images.
The hypothesis implies that the essential information about the
content of a high-resolution image is compressed in fewer dimen-
sions than the full pixel count would suggest. This idea under-
pins most of the generative algorithms right now like Autoencoders
[HRW86, ERVO21] and GANs [GPAM+14, ACB17]. The loss func-
tion is typically adversarial, meaning that an auxiliary discrimina-
tor network is trained in parallel, to differentiate real samples X

from reconstructed samples X̂ = D(E(X)).

Today, Latent Diffusion Models (LDM) [RBL+22] are the most suc-
cessful implementations of diffusion models. The idea is to separate
training into two different parts. Given an original data distribution
in pixel space ρ∗ = P(RK). The auto-encoder training step is done a-priori, so that the diffusion
model is used only to recover the induced latent distribution ρ̂∗ =: D#ρ∗ ∈ P(RL) with L ≪ K.
In this way, the sampling problem becomes a much lighter computational task.
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