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Alexandrov’s Theorem revisited

Capillarity Model

We consider Ω ⊂ Rn+1
+ a droplet, the associated free energy is given by

F(Ω) = P(Ω;Rn+1
+ ) +

∫
W
σ(z) dz +

∫
Ω
g(y) dy

= Surface tension + Wetting energy + Potential energy.

Question

What does the energy landscape look like? Why do we only see spherical
caps?
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Alexandrov’s Theorem revisited

Capillarity Regime

We consider the small volume regime |Ω| = γ � 1.

Rescaling Ω̃ = γ−
1

n+1 Ω:

γ−
n

n+1F(Ω) = P(Ω̃;Rn+1
+ ) +

∫
W̃
σ(γ

1
n+1 z) dz + γ

1
n+1

∫
Ω̃
g(γ

1
n+1 y) dy

Potential Energy is a lower order perturbation.

We will focus only on the energy landscape of perimeter, but similar results
seem to hold for the constant adhesion coefficient case. (work in progress)
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Alexandrov’s Theorem revisited

Isoperimetric problem

Theorem (Classical)

The ball is the only global minimizer of perimeter at fixed volume.
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Alexandrov’s Theorem revisited

Sets of finite perimeter

Perimeter has been extended by lower-semicontinuity to any Ω ⊂ Rn+1:

P(Ω) = inf
{

lim inf
n→∞

P(Ωn) : {Ωn}n∈N smooth & lim
n→∞

|Ωn4Ω| = 0
}
.

Ω is a set of finite perimeter (SOFP), if P(Ω) <∞.

This is the natural competition class.

Matias G. Delgadino | Imperial College | September 9, 2020 5 / 30



Alexandrov’s Theorem revisited

Sets of finite perimeter

Perimeter has been extended by lower-semicontinuity to any Ω ⊂ Rn+1:

P(Ω) = inf
{

lim inf
n→∞

P(Ωn) : {Ωn}n∈N smooth & lim
n→∞

|Ωn4Ω| = 0
}
.

Ω is a set of finite perimeter (SOFP), if P(Ω) <∞.

This is the natural competition class.

Matias G. Delgadino | Imperial College | September 9, 2020 5 / 30



Alexandrov’s Theorem revisited

Sets of finite perimeter

Perimeter has been extended by lower-semicontinuity to any Ω ⊂ Rn+1:

P(Ω) = inf
{

lim inf
n→∞

P(Ωn) : {Ωn}n∈N smooth & lim
n→∞

|Ωn4Ω| = 0
}
.

Ω is a set of finite perimeter (SOFP), if P(Ω) <∞.

This is the natural competition class.

Matias G. Delgadino | Imperial College | September 9, 2020 5 / 30



Alexandrov’s Theorem revisited

How bad can a SOFP be?

If Ω is a SOFP, then there exists ∂∗Ω ⊂ ∂Ω such that for every point in
x ∈ ∂∗Ω there exists measure theoretical unit normal νΩ(x):

lim
r→0+

∫
∂∗Ω−x

r

φ =

∫
ν⊥Ω (x)

φ ∀φ ∈ Cc(Rn+1).

Moreover, the divergence theorem holds:∫
Ω
div (X ) =

∫
∂∗Ω

X · νΩ ∀X ∈ [C 1
c (Rn+1)]n+1
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Alexandrov’s Theorem revisited

Pathological Example

Given {xi}i∈N a dense subset of B1, we consider the sequence of sets

Ω1 = B 1
2
(x1)

Ω2 = Ω14B 1
22

(x2)

Ω3 = Ω24B 1
23

(x3)

...

Ω∞ is a set of finite perimeter.
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Alexandrov’s Theorem revisited

Stability of the global minimizer

Theorem (Fusco, Maggi, Pratelli)

If |Ω| = |B1|, then there exists c(n) > 0 such that, up to translation,

c |Ω4B1|2 ≤ P(Ω)− P(B1).

At fixed volume, the perimeter behaves quadratically near the ball.

Are there any local minimizers or critical points?

Matias G. Delgadino | Imperial College | September 9, 2020 8 / 30



Alexandrov’s Theorem revisited

Stability of the global minimizer

Theorem (Fusco, Maggi, Pratelli)

If |Ω| = |B1|, then there exists c(n) > 0 such that, up to translation,

c |Ω4B1|2 ≤ P(Ω)− P(B1).

At fixed volume, the perimeter behaves quadratically near the ball.

Are there any local minimizers or critical points?

Matias G. Delgadino | Imperial College | September 9, 2020 8 / 30



Alexandrov’s Theorem revisited

Stability of the global minimizer

Theorem (Fusco, Maggi, Pratelli)

If |Ω| = |B1|, then there exists c(n) > 0 such that, up to translation,

c |Ω4B1|2 ≤ P(Ω)− P(B1).

At fixed volume, the perimeter behaves quadratically near the ball.

Are there any local minimizers or critical points?

Matias G. Delgadino | Imperial College | September 9, 2020 8 / 30



Alexandrov’s Theorem revisited

Euler-Lagrange conditions

For any X ∈ [C 1
c (Rn+1)]n+1 there is a family of diffeomorphisms

Tt(x) = x + tX (x) + O(|t|2).

Taking first variations

lim
t→0

P(Tt(Ω))− P(Ω)

t
=

∫
∂∗Ω

div ∂
∗ΩX =

∫
∂∗Ω

H∂Ω(X · νΩ),

where H∂Ω is the distributional mean curvature of the boundary.

Tt preserves the mass of Ω asymptotically if

0 =

∫
Ω
div (X ) =

∫
∂∗Ω

X · νΩ.

Hence, the mean curvature is constant H∂Ω = λ = nP(Ω)
(n+1)|Ω| .
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Alexandrov’s Theorem revisited

Mean curvature refresher

In differential geometry

H∂Ω = trace(II∂Ω) =
n∑

i=1

κi ,

where κi are the principal curvatures.
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Alexandrov’s Theorem revisited

Mean curvature refresher

In PDE’s, if ∂Ω is locally the graph of u, then

H∂Ω = −div

(
∇u√

1 + |∇u|2

)
.

We have strong comparison principle and regularity for Lipschitz weak
solutions!

This also comes out naturally of the first variation of perimeter.
Again, if ∂Ω is locally the graph of u, then locally

P(Ω) =

∫ √
1 + |∇u|2,

and the expression for the first variation follows.
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Alexandrov’s Theorem revisited

Alexandrov’s Theorem 1962

Theorem (Alexandrov)

Let Ω ⊂ Rn+1 be a connected open bounded set with C 2 boundary. If
HΩ is constant, then Ω is a ball.

Not true for unbounded sets. e.g. Cylinders and unduloids.

Proof.

Moving planes method.
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Alexandrov’s Theorem revisited

Alexandrov Theorem revisited

Question

Do we need smoothness or is it true for SOFP?

Theorem (with F. Maggi)

If Ω is a critical point of perimeter at fixed volume, then Ω is the union
of disjoint balls with equal radius.

Not true for varifolds. e.g. Wente’s torus.

Quantitative stability for smooth almost critical points. (Ciraolo-Maggi for
‖HΩ − λ‖L∞(∂Ω), D-Maggi-Mihaila-Neumayer ‖HΩ − λ‖L2(∂Ω) for smooth
anisotropies)
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Alexandrov’s Theorem revisited

Heintze-Karcher inequality

Heintze-Karcher inequality:
Let Ω be a smooth set with positive mean curvature, then

(n + 1)|Ω| ≤
∫
∂Ω

n

H∂Ω
.

The proof can be done by shooting rays of length n
H from the boundary

and covering Ω.
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Alexandrov’s Theorem revisited

Montiel-Ros’s proof

Set up:

g(x , t) = x − tνΩ, Γ = {(x , t) : x ∈ ∂Ω, 0 < t < κ−1
n (x)}.

Step 1:
Ω ⊂ g(Γ).
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Alexandrov’s Theorem revisited

Montiel-Ros’s proof

Step 2:

|Ω| ≤ |g(Γ)|

≤
∫
g(Γ)
H0(g−1(y)) dy

=

∫
Γ
JΓg(x , t) dtdx

=

∫
∂Ω

∫ 1
κn(x)

0

n∏
i=1

(1− tκi (x)) dtdx

≤
∫
∂Ω

∫ 1
κn(x)

0

(
1

n

n∑
i=1

(1− tκi (x))

)n

dxdt

≤
∫
∂Ω

∫ n
H(x)

0

(
1− t

H

n

)n

dtdx ≤ 1

n + 1

∫
∂Ω

n

H∂Ω
.
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Alexandrov’s Theorem revisited

Equality cases

Equality implies

g is injective a.e.

∂Ω is umbillical, hence Ω is a ball.

If ∂Ω has constant mean curvature, we can take X (x) = x

(n + 1)|Ω| =

∫
Ω
div (X ) =

1

H∂Ω

∫
∂Ω

H∂Ω(X · νΩ)

=
1

H∂Ω

∫
∂Ω

div ∂ΩX =
nP(Ω)

H∂Ω
.

This is an alternative proof of Alexandrov’s theorem.
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Alexandrov’s Theorem revisited

How do we get rid of the smoothness assumption/ how
much smoothness do we have?

Lemma

Let Ω a SOFP be a critical point of perimeter at fixed volume. Up to a
modification of measure zero, the singular set Σ = ∂Ω \ ∂∗Ω satisfies
Hn(Σ) = 0 and ∂∗Ω is locally analytic.

Proof.

Monotonicity fomula and Allard’s regulalrity.

Matias G. Delgadino | Imperial College | September 9, 2020 18 / 30



Alexandrov’s Theorem revisited

How do we get rid of the smoothness assumption/ how
much smoothness do we have?

Lemma

Let Ω a SOFP be a critical point of perimeter at fixed volume. Up to a
modification of measure zero, the singular set Σ = ∂Ω \ ∂∗Ω satisfies
Hn(Σ) = 0 and ∂∗Ω is locally analytic.

Proof.

Monotonicity fomula and Allard’s regulalrity.

Matias G. Delgadino | Imperial College | September 9, 2020 18 / 30



Alexandrov’s Theorem revisited

How do we get rid of the smoothness assumption/ how
much smoothness do we have?

Lemma

Let Ω a SOFP be a critical point of perimeter at fixed volume. Up to a
modification of measure zero, the singular set Σ = ∂Ω \ ∂∗Ω satisfies
Hn(Σ) = 0 and ∂∗Ω is locally analytic.

Proof.

Monotonicity fomula and Allard’s regulalrity.

Matias G. Delgadino | Imperial College | September 9, 2020 18 / 30



Alexandrov’s Theorem revisited

Step 1 revisited

New set up

g(x , t) = x − tνΩ, Γ∗ = {(x , t) : x ∈ ∂∗Ω, 0 < t < κ−1
n }.

We need to show
Hn+1(Ω \ g(Γ∗)) = 0.

Alternatively,

Hn+1({y ∈ Ω : d(y , ∂Ω) = d(y ,Σ)}) = 0.

Proof by contradiction.
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Alexandrov’s Theorem revisited

Step 1 revisited

Observation:
Given y1, y2 ∈ Ω. If there exists x ∈ ∂Ω such that d(y1, ∂Ω) = |x − y1|
and d(y2, ∂Ω) = |x − y2|. Then x , y1 and y2 lie on a straight line.

Proof:
Blow up. There are no stationary cones in a wedge.

This finishes the proof in the local minimizer case by density estimates.
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Alexandrov’s Theorem revisited

Step 1 revisited

Observation: For a.e. t > 0, the level sets of the distance function

Γt = {y ∈ Ω : d(y , ∂Ω) = t}

are C 1,1 rectifiable.

Conceptual proof:
The distance function is semiconcave, hence it is twice differentiable a.e.
Conclusion: For any r ∈ [0, t], the map

ζr = x + rνΓt
(x)

is Lipschitz on Γt .
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Alexandrov’s Theorem revisited

Step 1 revisited

Combining observations:

0 = 2Hn(Σ) ≥
∫

Σ
H0(ζ−1

t (y)) =

∫
Γt∩ζ−1

t (Σ)
JΓt

ζt =

∫
Γt∩ζ−1

t (Σ)

n∏
i=1

(1+tκi ).

Conclusion:

κΓt

1 = −1

t
a.e. on ζ−1

t (Σ) ∩ Γt .

Matias G. Delgadino | Imperial College | September 9, 2020 22 / 30



Alexandrov’s Theorem revisited

Step 1 revisited

Combining observations:

0 = 2Hn(Σ) ≥
∫

Σ
H0(ζ−1

t (y)) =

∫
Γt∩ζ−1

t (Σ)
JΓt

ζt =

∫
Γt∩ζ−1

t (Σ)

n∏
i=1

(1+tκi ).

Conclusion:

κΓt

1 = −1

t
a.e. on ζ−1

t (Σ) ∩ Γt .

Matias G. Delgadino | Imperial College | September 9, 2020 22 / 30



Alexandrov’s Theorem revisited

Step 1 revisited

Taking s ∈ (0, t)

κi ≤
1

t − s
& κ1 = −1

s
a.e. on ζt−s(ζ−1

t (Σ)) ⊂ Γs .

There exists y0 ∈ Γs , such that

HΓs
(y0) = −1,

and the distance function is twice differentiable at y0.

We need a comparisson principle between a paraboloid and a varifold.
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Alexandrov’s Theorem revisited

Step 1 revisited

Lemma (Schätzle)

The lower sheet of ∂Ω is a viscosity supersolution of

H = λ.

We reached a contradiction!
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Alexandrov’s Theorem revisited

Step 2 revisited

Same computation.

g : Γ∗ → Ω is injective a.e.

∂∗Ω is umbillical

There exists I ⊂ N, {xi}i∈I ⊂ Rn+1 and Si ⊂ B n
λ

(xi ), such that

∂∗Ω =
⋃
i∈I

Si .

What ties them together?
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Alexandrov’s Theorem revisited

Step 3

We show by contradiction

d(xi , ∂Ω) = 1 ∀i ∈ I .

If not, g is not injective a.e.

Si = ∂B n
λ

(xi ) follows by Schätzle.

The proof is done.
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Alexandrov’s Theorem revisited

Corollary

Corollary

If limi→∞ |Ω4Ωi | = 0, limi→∞ P(Ωi ) = P(Ω) and there exists λ such
that for every X ∈ [C∞c (Rn+1)]n+1

lim
i→∞

∫
∂∗Ωi

div ∂
∗ΩiX − λX · ν = 0,

then Ω is a finite union of balls of radius n/λ.
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Alexandrov’s Theorem revisited

Possible Application

Volume preserving mean curvature flow:
Velocity field on ∂Ω(t)

X (x , t) = −

(
H∂Ω(t)(x)− 1

P(Ω(t))

∫
∂Ω(t)

H∂Ω(t)

)
νΩ(t).

Dissipation Inequality

dP(Ω(t))

dt
= −

∫
∂Ω(t)

∣∣∣∣∣H∂Ω(t) −
1

P(Ω(t))

∫
∂Ω(t)

H∂Ω(t)

∣∣∣∣∣
2

.
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Alexandrov’s Theorem revisited

Possible Application

Ω(∞) is a single ball for initial data uniformly convex. (Huisken)

For general smooth initial conditions finite time singularities:

Continuation with surgery (Hamilton-Huisken-Sinestrari-Brendle...)

SOFP solutions for all time (Mugnai-Seis-Spadaro) ala
Algrem-Taylor-Wang.

Open question: Ω(∞) finite union of balls in general?
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Alexandrov’s Theorem revisited

Thank you, any questions?
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